Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vavilovskii Zhurnal Genet Selektsii ; 27(3): 240-249, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37293445

ABSTRACT

Spider mites (Acari: Tetranychidae) are dangerous pests of agricultural and ornamental crops, the most economically significant of them belonging to the genera Tetranychus, Eutetranychus, Oligonychus and Panonychus. The expansion of the distribution areas, the increased harmfulness and dangerous status of certain species in the family Tetranychidae and their invasion of new regions pose a serious threat to the phytosanitary status of agro- and biocenoses. Various approaches to acarofauna species diagnosis determine a rather diverse range of currently existing methods generally described in this review. Identification of spider mites by morphological traits, which is currently considered the main method, is complicated due to the complexity of preparing biomaterials for diagnosis and a limited number of diagnostic signs. In this regard, biochemical and molecular genetic methods such as allozyme analysis, DNA barcoding, restriction fragment length polymorphism (PCR-RFLP), selection of species-specific primers and real-time PCR are becoming important. In the review, close attention is paid to the successful use of these methods for species discrimination in the mites of the subfamily Tetranychinae. For some species, e. g., the two-spotted spider mite (Tetranychus urticae), a range of identification methods has been developed - from allozyme analysis to loop isothermal amplification (LAMP), while for many other species a much smaller variety of approaches is available. The greatest accuracy in the identification of spider mites can be achieved using a combination of several methods, e. g., examination of morphological features and one of the molecular approaches (DNA barcoding, PCR-RFLP, etc.). This review may be useful to specialists who are in search of an effective system for spider mite species identification as well as when developing new test systems relevant to specific plant crops or a specific region.

2.
Tsitologiia ; 58(4): 299-303, 2016.
Article in English | MEDLINE | ID: mdl-30191704

ABSTRACT

We analyzed the pattern of spindle microtubule (MT) regrowth after cold- or colcemid-induced MT depolymerization in Drosophila S2 cells. Cold-induced MT disassembly at low temperature (­2 °C) destroyed kinetochore-driven MT regrowth without affecting astral MT formation. Conversely, colcemid-induced MT depolymerization strongly impaired centrosome-dependent MT nucleation, allowing kinetochore-driven MT regrowth. Collectively, these results indicate that the kinetochore- and the centrosome-mediated MT assembly pathways exploit molecular mechanisms that are at least in part different.


Subject(s)
Drosophila Proteins/metabolism , Kinetochores/metabolism , Microtubules/metabolism , Spindle Apparatus/metabolism , Tubulin/metabolism , Animals , Cell Line , Drosophila Proteins/genetics , Drosophila melanogaster , Microtubules/genetics , Spindle Apparatus/genetics , Tubulin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...