Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 271: 116396, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38643671

ABSTRACT

Neglected tropical diseases (NTDs) comprise diverse infections with more incidence in tropical/sub-tropical areas. In spite of preventive and therapeutic achievements, NTDs are yet serious threats to the public health. Epidemiological reports of world health organization (WHO) indicate that more than 1.5 billion people are afflicted with at least one NTD type. Among NTDs, leishmaniasis, chagas disease (CD) and human African trypanosomiasis (HAT) result in substantial morbidity and death, particularly within impoverished countries. The statistical facts call for robust efforts to manage the NTDs. Currently, most of the anti-NTD drugs are engaged with drug resistance, lack of efficient vaccines, limited spectrum of pharmacological effect and adverse reactions. To circumvent the issue, numerous scientific efforts have been directed to the synthesis and pharmacological development of chemical compounds as anti-infectious agents. A survey of the anti-NTD agents reveals that the majority of them possess privileged nitrogen, sulfur and oxygen-based heterocyclic structures. In this review, recent achievements in anti-infective small molecules against parasitic NTDs are described, particularly from the SAR (Structure activity relationship) perspective. We also explore current advocating strategies to extend the scope of anti-NTD agents.


Subject(s)
Neglected Diseases , Neglected Diseases/drug therapy , Humans , Structure-Activity Relationship , Molecular Structure , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Animals , Chagas Disease/drug therapy , Leishmaniasis/drug therapy , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Parasitic Sensitivity Tests , Tropical Medicine
2.
J Biomol Struct Dyn ; : 1-14, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38450658

ABSTRACT

The mitotic kinesin Eg5 is a motor protein involved in the formation of bipolar spindle and cell division. Eg5 is overexpressed in various cancer cells and Eg5 targeting agents are promising candidates for cancer therapy. Subsequent to the discovery of monastrol as a small-molecule Eg5 modulator, numerous inhibitors/modulators have been reported from which a few entered clinical trials. Mutagenic investigations specified declined sensitivity of Eg5 allosteric site to monastrol due to the occurrence of drug-resistant mutations in some cell cultures. Accordingly, identification of tight binders to the mutant Eg5 allosteric site is an invaluable strategy to devise more efficient Eg5 modulators. We have previously synthesized a few dihydropyrimidinethione (DHPMT)-based 5-carboxamide monastrol derivatives (1-5) with higher cytotoxicities against AGS (IC50 9.90-98.48 µM) and MCF-7 (IC50 15.20-149.13 µM) cancer cell lines than monastrol. Within a current study, a structural insight was offered into the binding mechanism of intended derivatives inside the mutant Eg5 loop5/α2/α3 allosteric pocket. Molecular docking of the DHPMT R and S-enantiomers unraveled top-scored Eg5 complexes. Molecular dynamics (MD) simulations were carried out on 5 superior complexes as (R)-2/D130V-Eg5, (R)-4/D130V-Eg5, (R)-5/D130V-Eg5, (R)-5/L214I-Eg5, (R)-5/R119L-Eg5, and the control groups monastrol/D130V-Eg5, monastrol/L214I-Eg5, monastrol/R119L-Eg5. Free energy calculations were conducted through conformational sampling of MD-driven binding trajectories. Our results provided structural details on probable interaction mechanism of the cytotoxic DHPMTs that are difficult to address experimentally. The outputs of the current study propose new monastrol derivatives as probable resistance-overwhelming Eg5 modulators.Communicated by Ramaswamy H. Sarma.


MD simulations revealed that R-enantiomer of 5 overwhelmed drug-resistant D130V-Eg5.Induced fit L5 loop conformation led to the accommodation of 5 inside Eg5 allosteric site.Cooperative lipophilic contacts accommodated DHPMTs inside D130V-Eg5 allosteric site.Ser120 pointed toward 5 and made a stable H-bond particularly within the 60-100 ns.Major fluctuations of D130V-Eg5 allosteric pocket occurred at L5 loop upon binding to 5.

3.
Comput Biol Med ; 163: 107204, 2023 09.
Article in English | MEDLINE | ID: mdl-37421739

ABSTRACT

Epidermal-growth factor receptor (EGFR) is a transmembrane tyrosine kinase (TK) with a significant role in cell survival. EGFR is upregulated in various cancer cells and known as a druggable target. Gefitinib is a first-line TK inhibitor used against metastatic non-small cell lung cancer (NSCLC). Despite initial clinical response, a conserved therapeutic effect could not be achieved due to the occurrence of resistance mechanisms. Point mutations in EGFR genes are one of the major causes of rendered tumor sensitivity. To aid in the development of more efficient TKIs, chemical structures of prevailing drugs and their target binding patterns are very important. The aim of the present study was to propose synthetically-accessible gefitinib congeners with enhanced binding fitness to clinically frequent EGFR mutants. Docking simulations of intended molecules identified 1-(4-(3-chloro-4-fluorophenylamino)-7-methoxyquinazolin-6-yl)-3-(oxazolidin-2-ylmethyl) thiourea (23) as a top-binder structure inside G719S, T790 M, L858R and T790 M/L858R-EGFR active sites. Superior docked complexes were subjected to the entire 400 ns molecular dynamics (MD) simulations. Analysis of data revealed the stability of mutant enzymes upon binding to molecule 23. All mutant complexes with the exception of a T790 M/L858R-EGFR, were majorly stabilized through cooperative hydrophobic contacts. Pairwise analysis of H-bonds proved Met793 as the conserved residue with stable H-bond participations as hydrogen bond donor (Frequency 63-96%). Amino acid decomposition analysis confirmed the probable role of Met793 in complex stabilization. Estimated binding free energies indicated the proper accommodation of molecule 23 inside target active sites. Pairwise energy decompositions of stable binding modes revealed the energetic contribution of key residues. Although wet lab experiments are required to unravel the mechanistic details of mEGFR inhibition, MD results provide structural basis for those events that are difficult to address experimentally. The outputs of the current study may assist to design small molecules with high potency to mEGFRs.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Gefitinib/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Molecular Dynamics Simulation , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , ErbB Receptors/genetics , ErbB Receptors/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
4.
Int J Antimicrob Agents ; 59(3): 106518, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35045309

ABSTRACT

Fungal infections have greatly contributed to infectious-related deaths in the past century. This issue has become worse with the advent of immunity-impairing conditions such as HIV. The eukaryote nature of fungal pathogens makes them harder to eradicate than bacterial infections. Given the importance of the problem, considerable efforts have been made to the synthesis and biological assessment of azole-based chemical scaffolds and their bioisosteres. The emergence of validated macromolecular targets within different fungal species has inspired structure-based drug design strategies toward diverse azole-based agents. Despite advantageous features, the emergence of drug-resistant fungal species has restricted the applicability of current azoles as first-line antifungal agents. Consequently, it appears advisable to elucidate the structure activity relationships (SAR) and chemical biodiversity within antifungal azoles. This review is devoted to a brief look at clinically applied drugs, structure-based classification of azole antifungals and their SAR. The reviewed molecules belong to the antifungal structures that were reported throughout 2016-2020.


Subject(s)
Azoles , Mycoses , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Azoles/pharmacology , Drug Resistance, Fungal , Humans , Microbial Sensitivity Tests , Mycoses/drug therapy , Structure-Activity Relationship
5.
Curr Med Chem ; 20(36): 4436-50, 2013.
Article in English | MEDLINE | ID: mdl-23834166

ABSTRACT

Hydroxycinnamic acids (HCAs) are important phytochemicals possessing significant biological properties. Several investigators have studied in vitro antioxidant activity of HCAs in detail. In this review, we have gathered the studies focused on the structure-activity relationships (SARs) of these compounds that have used medicinal chemistry to generate more potent antioxidant molecules. Most of the reports indicated that the presence of an unsaturated bond on the side chain of HCAs is vital to their activity. The structural features that were reported to be of importance to the antioxidant activity were categorized as follows: modifications of the aromatic ring, which include alterations in the number and position of hydroxy groups and insertion of electron donating or withdrawing moieties as well as modifications of the carboxylic function that include esterification and amidation process. Furthermore, reports that have addressed the influence of physicochemical properties including redox potential, lipid solubility and dissociation constant on the antioxidant activity were also summarized. Finally, the pro-oxidant effect of HCAs in some test systems was addressed. Most of the investigations concluded that the presence of ortho-dihydroxy phenyl group (catechol moiety) is of significant importance to the antioxidant activity, while, the presence of three hydroxy groups does not necessarily improve the activity. Optimization of the structure of molecular leads is an important task of modern medicinal chemistry and its accomplishment relies on the careful assessment of SARs. SAR studies on HCAs can identify the most successful antioxidants that could be useful for management of oxidative stress-related diseases.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Oxidation-Reduction , Oxidative Stress/drug effects , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...