Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Water Res ; 255: 121508, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38552487

ABSTRACT

Water treatment works have previously shown high efficiency in removing microplastics > 25 µm from raw source water. However, what is less well known is the extent to which microplastics of this size class are generated or lost within the water distribution network, particularly whether there is a greater presence in the customer tap than in the water treatment works outlet. This study focused on the presence of 21 different types of synthetic polymer particles with sizes larger than 25 µm examined through multiple rounds of sampling at outlets of water treatment works (WTW), service reservoirs (SR), and customer taps (CT) managed by seven different water companies in Britain. Nineteen different types of polymers were detected; their signature and concentration varied based on the round of sampling, the location within the water supply network, and the water company responsible for managing the supply. Among the polymers examined, polyamide (PA), polyethene terephthalate (PET), polypropylene (PP), and polystyrene (PS) were the most commonly found. Apart from PET having its highest concentration of 0.0189 microplastic per litre (MP/L) in the SR, the concentrations of the other three most frequent polymers (PS = 0.017 MP/L, PA = 0.0752 MP/L, PP= 0.1513 MP/L) were highest in the CT. The overall prevalence of this size of microplastics in the network is low, but there was a high variability of polymer types and occurrences. These spatial and temporal variations suggested that the MP in the distribution network may exist as a series of pulses. Given the presence and polymer types, the potential for some of the microplastics to originate from materials used in the water network and domestic plumbing systems cannot be ruled out. As found before, the absolute number of microplastics in the water distribution network remained extremely low.

2.
Mol Ecol Resour ; 24(2): e13903, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37994249

ABSTRACT

Palaeolimnological records provide valuable information about how phytoplankton respond to long-term drivers of environmental change. Traditional palaeolimnological tools such as microfossils and pigments are restricted to taxa that leave sub-fossil remains, and a method that can be applied to the wider community is required. Sedimentary DNA (sedDNA), extracted from lake sediment cores, shows promise in palaeolimnology, but validation against data from long-term monitoring of lake water is necessary to enable its development as a reliable record of past phytoplankton communities. To address this need, 18S rRNA gene amplicon sequencing was carried out on lake sediments from a core collected from Esthwaite Water (English Lake District) spanning ~105 years. This sedDNA record was compared with concurrent long-term microscopy-based monitoring of phytoplankton in the surface water. Broadly comparable trends were observed between the datasets, with respect to the diversity and relative abundance and occurrence of chlorophytes, dinoflagellates, ochrophytes and bacillariophytes. Up to 20% of genera were successfully captured using both methods, and sedDNA revealed a previously undetected community of phytoplankton. These results suggest that sedDNA can be used as an effective record of past phytoplankton communities, at least over timescales of <100 years. However, a substantial proportion of genera identified by microscopy were not detected using sedDNA, highlighting the current limitations of the technique that require further development such as reference database coverage. The taphonomic processes which may affect its reliability, such as the extent and rate of deposition and DNA degradation, also require further research.


Subject(s)
Lakes , Phytoplankton , Phytoplankton/genetics , Microscopy , Reproducibility of Results , DNA , Water , Environmental Monitoring/methods
3.
Sci Total Environ ; 914: 169445, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38159778

ABSTRACT

DNA metabarcoding has been performed on a large number of river phytobenthos samples collected from the UK, using rbcL primers optimised for diatoms. Within this dataset the composition of non-diatom sequence reads was studied and the effect of including these in models for evaluating the nutrient gradient was assessed. Whilst many non-diatom taxonomic groups were detected, few contained the full diversity expected in riverine environments. This may be due to the performance of the current primers in characterising the wider phytobenthic community and influenced by the sampling method employed, as both were developed specifically for diatoms. Nevertheless, the study identified considerable diversity in some groups, e.g. Eustigmatophyceae and a wider distribution than previously thought for freshwater Phaeophyceae. These results offer a strong case for the benefits of metabarcoding for expanding knowledge of aquatic biodiversity in the UK and elsewhere. Many of the ASVs associated with non-diatoms showed significant pressure responses; however, models that included non-diatoms had similar predictive strength to those based on diatoms alone. Whilst limitations of the primers for assessing non-diatoms may play a role in explaining these results, the diatoms provide a strong signal along the nutrient gradient and other algae, therefore, add little unique information. We recommend that future developments should use ASVs to calculate metrics, with links to reference databases made as a final step to generate lists of taxa to support interpretation. Any further exploration of the potential of non-diatoms would benefit from access to a well-curated reference database, similar to diat.barcode. Such a database does not yet exist, and we caution against the indiscriminate use of NCBI GenBank as a taxonomic resource as many rbcL sequences deposited have not been curated.


Subject(s)
Diatoms , Rivers , Fresh Water , Biodiversity , Databases, Factual , Environmental Monitoring , Ecosystem
4.
Front Microbiol ; 14: 1070340, 2023.
Article in English | MEDLINE | ID: mdl-36998408

ABSTRACT

Introduction: There are concerns that antimicrobial usage (AMU) is driving an increase in multi-drug resistant (MDR) bacteria so treatment of microbial infections is becoming harder in humans and animals. The aim of this study was to evaluate factors, including usage, that affect antimicrobial resistance (AMR) on farm over time. Methods: A population of 14 cattle, sheep and pig farms within a defined area of England were sampled three times over a year to collect data on AMR in faecal Enterobacterales flora; AMU; and husbandry or management practices. Ten pooled samples were collected at each visit, with each comprising of 10 pinches of fresh faeces. Up to 14 isolates per visit were whole genome sequenced to determine presence of AMR genes. Results: Sheep farms had very low AMU in comparison to the other species and very few sheep isolates were genotypically resistant at any time point. AMR genes were detected persistently across pig farms at all visits, even on farms with low AMU, whereas AMR bacteria was consistently lower on cattle farms than pigs, even for those with comparably high AMU. MDR bacteria was also more commonly detected on pig farms than any other livestock species. Discussion: The results may be explained by a complex combination of factors on pig farms including historic AMU; co-selection of AMR bacteria; variation in amounts of antimicrobials used between visits; potential persistence in environmental reservoirs of AMR bacteria; or importation of pigs with AMR microbiota from supplying farms. Pig farms may also be at increased risk of AMR due to the greater use of oral routes of group antimicrobial treatment, which were less targeted than cattle treatments; the latter mostly administered to individual animals. Also, farms which exhibited either increasing or decreasing trends of AMR across the study did not have corresponding trends in their AMU. Therefore, our results suggest that factors other than AMU on individual farms are important for persistence of AMR bacteria on farms, which may be operating at the farm and livestock species level.

5.
Elife ; 122023 Mar 24.
Article in English | MEDLINE | ID: mdl-36961866

ABSTRACT

Plasmids enable the dissemination of antimicrobial resistance (AMR) in common Enterobacterales pathogens, representing a major public health challenge. However, the extent of plasmid sharing and evolution between Enterobacterales causing human infections and other niches remains unclear, including the emergence of resistance plasmids. Dense, unselected sampling is essential to developing our understanding of plasmid epidemiology and designing appropriate interventions to limit the emergence and dissemination of plasmid-associated AMR. We established a geographically and temporally restricted collection of human bloodstream infection (BSI)-associated, livestock-associated (cattle, pig, poultry, and sheep faeces, farm soils) and wastewater treatment work (WwTW)-associated (influent, effluent, waterways upstream/downstream of effluent outlets) Enterobacterales. Isolates were collected between 2008 and 2020 from sites <60 km apart in Oxfordshire, UK. Pangenome analysis of plasmid clusters revealed shared 'backbones', with phylogenies suggesting an intertwined ecology where well-conserved plasmid backbones carry diverse accessory functions, including AMR genes. Many plasmid 'backbones' were seen across species and niches, raising the possibility that plasmid movement between these followed by rapid accessory gene change could be relatively common. Overall, the signature of identical plasmid sharing is likely to be a highly transient one, implying that plasmid movement might be occurring at greater rates than previously estimated, raising a challenge for future genomic One Health studies.


Subject(s)
Gammaproteobacteria , Sepsis , Humans , Animals , Cattle , Swine , Sheep/genetics , Escherichia coli/genetics , Livestock/genetics , Wastewater , Plasmids/genetics , Klebsiella pneumoniae/genetics , United Kingdom , Anti-Bacterial Agents , beta-Lactamases/genetics , Microbial Sensitivity Tests
6.
Sci Rep ; 12(1): 14331, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35995928

ABSTRACT

We use a national citizen science monitoring scheme to quantify how agricultural intensification affects honeybee diet breadth (number of plant species). To do this we used DNA metabarcoding to identify the plants present in 527 honey samples collected in 2019 across Great Britain. The species richness of forage plants was negatively correlated with arable cropping area, although this was only found early in the year when the abundance of flowering plants was more limited. Within intensively farmed areas, honeybee diets were dominated by Brassica crops (including oilseed rape). We demonstrate how the structure and complexity of honeybee foraging relationships with plants is negatively affected by the area of arable crops surrounding hives. Using information collected from the beekeepers on the incidence of an economically damaging bee disease (Deformed Wing Virus) we found that the occurrence of this disease increased where bees foraged in agricultural land where there was a high use of foliar insecticides. Understanding impacts of land use on resource availability is fundamental to assessing long-term viability of pollinator populations. These findings highlight the importance of supporting temporally timed resources as mitigation strategies to support wider pollinator population viability.


Subject(s)
Citizen Science , Pesticides , Animals , Bees , Crops, Agricultural , Pesticides/toxicity , Pollination , RNA Viruses , Seasons
7.
Water Res ; 211: 118054, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35066262

ABSTRACT

Large river systems, such as the River Ganges (Ganga), provide crucial water resources for the environment and society, yet often face significant challenges associated with cumulative impacts arising from upstream environmental and anthropogenic influences. Understanding the complex dynamics of such systems remains a major challenge, especially given accelerating environmental stressors including climate change and urbanization, and due to limitations in data and process understanding across scales. An integrated approach is required which robustly enables the hydrogeochemical dynamics and underpinning processes impacting water quality in large river systems to be explored. Here we develop a systematic approach for improving the understanding of hydrogeochemical dynamics and processes in large river systems, and apply this to a longitudinal survey (> 2500 km) of the River Ganges (Ganga) and key tributaries in the Indo-Gangetic basin. This framework enables us to succinctly interpret downstream water quality trends in response to the underpinning processes controlling major element hydrogeochemistry across the basin, based on conceptual water source signatures and dynamics. Informed by a 2019 post-monsoonal survey of 81 river bank-side sampling locations, the spatial distribution of a suite of selected physico-chemical and inorganic parameters, combined with segmented linear regression, reveals minor and major downstream hydrogeochemical transitions. We use this information to identify five major hydrogeochemical zones, characterized, in part, by the inputs of key tributaries, urban and agricultural areas, and estuarine inputs near the Bay of Bengal. Dominant trends are further explored by investigating geochemical relationships (e.g. Na:Cl, Ca:Na, Mg:Na, Sr:Ca and NO3:Cl), and how water source signatures and dynamics are modified by key processes, to assess the relative importance of controls such as dilution, evaporation, water-rock interactions (including carbonate and silicate weathering) and anthropogenic inputs. Mixing/dilution between sources and water-rock interactions explain most regional trends in major ion chemistry, although localized controls plausibly linked to anthropogenic activities are also evident in some locations. Temporal and spatial representativeness of river bank-side sampling are considered by supplementary sampling across the river at selected locations and via comparison to historical records. Limitations of such large-scale longitudinal sampling programs are discussed, as well as approaches to address some of these inherent challenges. This approach brings new, systematic insight into the basin-wide controls on the dominant geochemistry of the River Ganga, and provides a framework for characterising dominant hydrogeochemical zones, processes and controls, with utility to be transferable to other large river systems.


Subject(s)
Groundwater , Water Pollutants, Chemical , Environmental Monitoring , India , Rivers , Water Pollutants, Chemical/analysis , Water Quality , Weather
9.
Water Res ; 206: 117734, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34655933

ABSTRACT

Faecal indicator organisms (FIOs) are limited in their ability to protect public health from the microbial contamination of drinking water because of their transience and time required to deliver a result. We evaluated alternative rapid, and potentially more resilient, approaches against a benchmark FIO of thermotolerant coliforms (TTCs) to characterise faecal contamination over 14 months at 40 groundwater sources in a Ugandan town. Rapid approaches included: in-situ tryptophan-like fluorescence (TLF), humic-like fluorescence (HLF), turbidity; sanitary inspections; and total bacterial cells by flow cytometry. TTCs varied widely in six sampling visits: a third of sources tested both positive and negative, 50% of sources had a range of at least 720 cfu/100 mL, and a two-day heavy rainfall event increased median TTCs five-fold. Using source medians, TLF was the best predictor in logistic regression models of TTCs ≥10 cfu/100 mL (AUC 0.88) and best correlated to TTC enumeration (ρs 0.81), with HLF performing similarly. Relationships between TLF or HLF and TTCs were stronger in the wet season than the dry season, when TLF and HLF were instead more associated with total bacterial cells. Source rank-order between sampling rounds was considerably more consistent, according to cross-correlations, using TLF or HLF (min ρs 0.81) than TTCs (min ρs 0.34). Furthermore, dry season TLF and HLF cross-correlated more strongly (ρs 0.68) than dry season TTCs (ρs 0.50) with wet season TTCs, when TTCs were elevated. In-situ TLF or HLF are more rapid and resilient indicators of faecal contamination risk than TTCs.


Subject(s)
Drinking Water , Groundwater , Environmental Monitoring , Feces , Spectrometry, Fluorescence , Water Microbiology
10.
Ecotoxicology ; 30(10): 2096-2108, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34553289

ABSTRACT

This work aimed to characterize the gut and faeces bacterial communities (BC) of Porcellionides pruinosus using high-throughput sequencing. Isopods were collected from the field and kept in laboratory conditions similar to those normally applied in ecotoxicology tests. Faeces and purged guts of isopods (n = 3 × 30) were analysed by pyrosequencing the V3-V4 region of 16 S rRNA encoding gene. Results showed that gut and faecal BCs were dominated by Proteobacteria, particularly by an OTU (Operational Taxonomic Unit) affiliated to genus Coxiella. Diversity and richness values were statistically higher for faecal BC, mainly due to the occurrence of several low-abundance phylotypes. These results may reflect faecal carriage of bacterial groups that cannot settle in the gut. BCs of P. pruinosus comprised: (1) common members of the soil microbiota, (2) bacterial symbionts, (3) bacteria related to host metabolic/ecological features, and (4) bacterial etiological agents. Comparison of BC of this isopod species with the BC from other invertebrates revealed common bacterial groups across taxa. The baseline information provided by this work will assist the design and data interpretation of future ecotoxicological or biomonitoring assays where the analysis of P. pruinosus BC should be included as an additional indicator. CAPSULE: Terrestrial isopods bacterial communities might support ecotoxicological assays and biomonitoring processes as a valuable tool.


Subject(s)
Isopoda , Soil Pollutants , Animals , Bacteria/genetics , Feces/chemistry , RNA, Ribosomal, 16S/genetics , Soil , Soil Pollutants/analysis
11.
MethodsX ; 8: 101303, 2021.
Article in English | MEDLINE | ID: mdl-34434823

ABSTRACT

Worldwide honeybees (Apis mellifera L.) are one of the most widely kept domesticated animals, supporting domestic and commercial livelihoods through the production of honey and wax, as well as in the delivery of pollination services to crops. Quantifying which plant species are foraged upon by honeybees provides insights into their nutritional status as well as patterns of landscape scale habitat utilization. Here we outline a rapid and reproducible methodology for identifying environmental DNA (eDNA) originating principally from pollen grains suspended within honey. The process is based on a DNA extraction incorporating vacuum filtration prior to universal eukaryotic internal transcribed spacer 2 region (ITS2) amplicon generation, sequencing and identification. To provide a pre-cursor to sequence phylotyping, we outline systems for error-corrected processing amplicon sequence variant abundance tables that removes chimeras. This methodology underpins the new UK National Honey Monitoring Scheme.•We compare the efficacy and speed of centrifugation and filtration systems for removing pollen from honey samples as a precursor to plant DNA barcoding.•We introduce the 'HONEYPI' informatics pipeline, an open access resource implemented in python 2.7, to ensure long-term reproducibility during the process of amplicon sequence variant classification.

12.
Front Microbiol ; 12: 682886, 2021.
Article in English | MEDLINE | ID: mdl-34349739

ABSTRACT

High-throughput sequencing 16S rRNA gene surveys have enabled new insights into the diversity of soil bacteria, and furthered understanding of the ecological drivers of abundances across landscapes. However, current analytical approaches are of limited use in formalizing syntheses of the ecological attributes of taxa discovered, because derived taxonomic units are typically unique to individual studies and sequence identification databases only characterize taxonomy. To address this, we used sequences obtained from a large nationwide soil survey (GB Countryside Survey, henceforth CS) to create a comprehensive soil specific 16S reference database, with coupled ecological information derived from survey metadata. Specifically, we modeled taxon responses to soil pH at the OTU level using hierarchical logistic regression (HOF) models, to provide information on both the shape of landscape scale pH-abundance responses, and pH optima (pH at which OTU abundance is maximal). We identify that most of the soil OTUs examined exhibited a non-flat relationship with soil pH. Further, the pH optima could not be generalized by broad taxonomy, highlighting the need for tools and databases synthesizing ecological traits at finer taxonomic resolution. We further demonstrate the utility of the database by testing against geographically dispersed query 16S datasets; evaluating efficacy by quantifying matches, and accuracy in predicting pH responses of query sequences from a separate large soil survey. We found that the CS database provided good coverage of dominant taxa; and that the taxa indicating soil pH in a query dataset corresponded with the pH classifications of top matches in the CS database. Furthermore we were able to predict query dataset community structure, using predicted abundances of dominant taxa based on query soil pH data and the HOF models of matched CS database taxa. The database with associated HOF model outputs is released as an online portal for querying single sequences of interest (https://shiny-apps.ceh.ac.uk/ID-TaxER/), and flat files are made available for use in bioinformatic pipelines. The further development of advanced informatics infrastructures incorporating modeled ecological attributes along with new functional genomic information will likely facilitate large scale exploration and prediction of soil microbial functional biodiversity under current and future environmental change scenarios.

13.
Anal Bioanal Chem ; 413(14): 3789-3799, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33890119

ABSTRACT

The lack of standardised methodologies in microplastic research has been addressed in recent years as it hampers the comparison of results across studies. The quantification of microplastics in the environment is key to the assessment of the potential eco-toxicological impacts that this new category of emerging pollutants could have on terrestrial and aquatic species. Therefore, the need for protocols that are robust, simple and reliable together with their standardisation are of crucial importance. This study has focused on removal of organic matter with Fenton reagent from wastewater and sludge samples. This step of analysis was optimised by implementing a multi-digestion treatment on these samples that have high concentration of complex mixtures of organic matter, which interfere with microplastic enumeration. Moreover, this study targeted the detection of microplastics in the sub-hundred-micron size range due to the potential higher risks associated with smaller-sized particles and the limited data available from previous wastewater research. To show the validity of the method, triplicate samples of raw sewage, final effluent and sludge were independently spiked with two different sizes and types of microplastic polymers. Due to the various analytical stages required for the isolation of microplastics, time is a limiting factor in sample processing. The sequential digestion with Fenton reagent represents an inexpensive and time-efficient procedure for wastewater research providing effective degradation of organic material. These advantages over other currently available methods mean the method is suitable for analysis of large numbers of samples allowing robust monitoring data sets to be generated.

14.
Sci Adv ; 7(15)2021 04.
Article in English | MEDLINE | ID: mdl-33837077

ABSTRACT

Escherichia coli and other Enterobacteriaceae are diverse species with "open" pangenomes, where genes move intra- and interspecies via horizontal gene transfer. However, most analyses focus on clinical isolates. The pangenome dynamics of natural populations remain understudied, despite their suggested role as reservoirs for antimicrobial resistance (AMR) genes. Here, we analyze near-complete genomes for 827 Enterobacteriaceae (553 Escherichia and 274 non-Escherichia spp.) with 2292 circularized plasmids in total, collected from 19 locations (livestock farms and wastewater treatment works in the United Kingdom) within a 30-km radius at three time points over a year. We find different dynamics for chromosomal and plasmid-borne genes. Plasmids have a higher burden of AMR genes and insertion sequences, and AMR-gene-carrying plasmids show evidence of being under stronger selective pressure. Environmental niche and local geography both play a role in shaping plasmid dynamics. Our results highlight the importance of local strategies for controlling the spread of AMR.

15.
ISME J ; 15(8): 2322-2335, 2021 08.
Article in English | MEDLINE | ID: mdl-33649550

ABSTRACT

F-type plasmids are diverse and of great clinical significance, often carrying genes conferring antimicrobial resistance (AMR) such as extended-spectrum ß-lactamases, particularly in Enterobacterales. Organising this plasmid diversity is challenging, and current knowledge is largely based on plasmids from clinical settings. Here, we present a network community analysis of a large survey of F-type plasmids from environmental (influent, effluent and upstream/downstream waterways surrounding wastewater treatment works) and livestock settings. We use a tractable and scalable methodology to examine the relationship between plasmid metadata and network communities. This reveals how niche (sampling compartment and host genera) partition and shape plasmid diversity. We also perform pangenome-style analyses on network communities. We show that such communities define unique combinations of core genes, with limited overlap. Building plasmid phylogenies based on alignments of these core genes, we demonstrate that plasmid accessory function is closely linked to core gene content. Taken together, our results suggest that stable F-type plasmid backbone structures can persist in environmental settings while allowing dramatic variation in accessory gene content that may be linked to niche adaptation. The association of F-type plasmids with AMR may reflect their suitability for rapid niche adaptation.


Subject(s)
Livestock , beta-Lactamases , Animals , Anti-Bacterial Agents , Genomics , Phylogeny , Plasmids/genetics , beta-Lactamases/genetics
16.
Mol Ecol ; 30(13): 3252-3269, 2021 07.
Article in English | MEDLINE | ID: mdl-33002225

ABSTRACT

Fishes stocked for recreation and angling can damage freshwater habitats and negatively impact biodiversity. The pond-associated crucian carp (Carassius carassius) is rare across Europe and is stocked for conservation management in England, but its impacts on pond biota are understudied. Freshwater invertebrates contribute substantially to aquatic biodiversity, encompassing many rare and endemic species, but their small size and high abundance complicate their assessment. Practitioners have employed sweep-netting and kick-sampling with microscopy (morphotaxonomy), but specimen size/quality and experience can bias identification. DNA and environmental DNA (eDNA) metabarcoding offer alternative means of invertebrate assessment. We compared invertebrate diversity in ponds (N = 18) with and without crucian carp using morphotaxonomic identification, DNA metabarcoding and eDNA metabarcoding. Five 2 L water samples and 3 min sweep-net samples were collected at each pond. Inventories produced by morphotaxonomic identification of netted samples, DNA metabarcoding of bulk tissue samples and eDNA metabarcoding of water samples were compared. Alpha diversity was greatest with DNA or eDNA metabarcoding, depending on whether standard or unbiased methods were considered. DNA metabarcoding reflected morphotaxonomic identification, whereas eDNA metabarcoding produced markedly different communities. These complementary tools should be combined for comprehensive invertebrate assessment. Crucian carp presence minimally reduced alpha diversity in ponds, but positively influenced beta diversity through taxon turnover (i.e., ponds with crucian carp contained different invertebrates to fishless ponds). Crucian carp presence contributes to landscape-scale invertebrate diversity, supporting continued conservation management in England. Our results show that molecular tools can enhance freshwater invertebrate assessment and facilitate development of more accurate and ecologically effective pond management strategies.


Subject(s)
Carps , Ponds , Animals , Biodiversity , Carps/genetics , DNA Barcoding, Taxonomic , England , Environmental Monitoring , Europe , Invertebrates/genetics
17.
Environ Microbiol ; 23(1): 484-498, 2021 01.
Article in English | MEDLINE | ID: mdl-33258525

ABSTRACT

The heterogeneous nature of lotic habitats plays an important role in the complex ecological and evolutionary processes that structure the microbial communities within them. Due to such complexity, our understanding of lotic microbial ecology still lacks conceptual frameworks for the ecological processes that shape these communities. We explored how bacterial community composition and underlying ecological assembly processes differ between lotic habitats by examining community composition and inferring community assembly processes across four major habitat types (free-living, particle-associated, biofilm on benthic stones and rocks, and sediment). This was conducted at 12 river sites from headwater streams to the main river in the River Thames, UK. Our results indicate that there are distinct differences in the bacterial communities between four major habitat types, with contrasting ecological processes shaping their community assembly processes. While the mobile free-living and particle-associated communities were consistently less diverse than the fixed sediment and biofilm communities, the latter two communities displayed higher homogeneity across the sampling sites. This indicates that the relative influence of deterministic environmental filtering is elevated in sediment and biofilm communities compared with free-living and particle-associated communities, where stochastic processes play a larger role.


Subject(s)
Bacteria/isolation & purification , Microbiota , Rivers/microbiology , Bacteria/classification , Bacteria/genetics , Ecosystem , Phylogeny , Rivers/chemistry , United Kingdom
18.
Sci Total Environ ; 750: 141284, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33182170

ABSTRACT

Regular monitoring of drinking water quality is vital to identify contamination of potable water supplies. Testing for microbial contamination is important to prevent transmission of waterborne disease, but establishing and maintaining a water quality monitoring programme requires sustained labour, consumables and resources. In low resource settings such as developing countries, this can prove difficult, but measuring microbial contamination is listed as a requirement of reaching the UN's Sustainable Development Goal 6 for water and sanitation. A nine-month water quality monitoring programme was conducted in rural Malawi to assess the suitability of tryptophan-like fluorescence (TLF), an emerging method for rapidly detecting microbial contamination, as a drinking water quality monitoring tool. TLF data was compared with thermotolerant coliforms (TTCs, E. coli) and inorganic hydrochemical parameters. A large (n = 235) temporal dataset was collected from five groundwater drinking water sources, with samples collected once or twice weekly depending on the season. The results show that TLF can indicate a broader contamination risk but is not as sensitive to short term variability when compared to other faecal indicators. This is likely due to a broad association of TLF with elevated DOC concentrations from a range of different sources. Elevated TLF may indicate preferential conditions for the persistence of TTCs and/or E. coli, but not necessarily a public health risk from microbial contamination. TLF is therefore a more precautionary risk indicator than microbial culturing techniques and could prove useful as a high-level screening tool for initial risk assessment. For widespread use of TLF to be successful, standardisation of TLF values associated with different levels of risk is required, however, this study highlights the difficulties of equating TLF thresholds to TTCs or E. coli data because of the influence of DOC/HLF on the TLF signal.


Subject(s)
Drinking Water , Environmental Monitoring , Escherichia coli , Fluorescence , Humans , Malawi , Tryptophan , Water Microbiology , Water Quality , Water Supply
19.
Environ Pollut ; 268(Pt A): 115841, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33120336

ABSTRACT

In order to assess risks to the natural environment from microplastics, it is necessary to have reliable information on all potential inputs and discharges. This relies on stringent quality control measures to ensure accurate reporting. Here we focus on wastewater treatment works (WwTWs) and the complex sample matrices these provide. Composite samples of both influent and effluent were collected over a 24 h period on two separate occasions from eight different WwTWs across the UK. Sludge samples were taken on five occasions from five WwTWs. The WwTW treatments included activated sludge, trickling filter and biological aerated flooded filter with or without tertiary treatment. Using micro-FTIR analysis, microplastics ≥25 µm were identified and quantified. Procedural blanks were used to derive limits of detection (LOD) and limits of quantification (LOQ). Where values were above the LOQ, microplastics in the influent ranged from 955 to 17,214 microplastic particles/L and in the effluent from 2 to 54 microplastic particles/L, giving an average removal rate of 99.8%. Microplastics could be quantified in sludge at concentrations of 301-10,380 microplastics/g dry weight, this analytical method therefore revealing higher concentrations than reported in previous studies. The most common polymers present overall were polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET). We also report on critical considerations for blank corrections and quality control measures to ensure reliable microplastic analysis across different sample types.


Subject(s)
Wastewater , Water Pollutants, Chemical , Environmental Monitoring , Microplastics , Plastics , Water Pollutants, Chemical/analysis
20.
Sci Rep ; 10(1): 15379, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32958794

ABSTRACT

Fluorescent natural organic matter at tryptophan-like (TLF) and humic-like fluorescence (HLF) peaks is associated with the presence and enumeration of faecal indicator bacteria in groundwater. We hypothesise, however, that it is predominantly extracellular material that fluoresces at these wavelengths, not bacterial cells. We quantified total (unfiltered) and extracellular (filtered at < 0.22 µm) TLF and HLF in 140 groundwater sources across a range of urban population densities in Kenya, Malawi, Senegal, and Uganda. Where changes in fluorescence occurred following filtration they were correlated with potential controlling variables. A significant reduction in TLF following filtration (ΔTLF) was observed across the entire dataset, although the majority of the signal remained and thus considered extracellular (median 96.9%). ΔTLF was only significant in more urbanised study areas where TLF was greatest. Beneath Dakar, Senegal, ΔTLF was significantly correlated to total bacterial cells (ρs 0.51). No significant change in HLF following filtration across all data indicates these fluorophores are extracellular. Our results suggest that TLF and HLF are more mobile than faecal indicator bacteria and larger pathogens in groundwater, as the predominantly extracellular fluorophores are less prone to straining. Consequently, TLF/HLF are more precautionary indicators of microbial risks than faecal indicator bacteria in groundwater-derived drinking water.


Subject(s)
Feces/microbiology , Fluorescent Dyes/chemistry , Groundwater/microbiology , Tryptophan/chemistry , Africa , Drinking Water/chemistry , Drinking Water/microbiology , Environmental Monitoring/methods , Fluorescence , Groundwater/chemistry , Water Microbiology , Water Supply/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...