Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Lancet Diabetes Endocrinol ; 11(8): 545-554, 2023 08.
Article in English | MEDLINE | ID: mdl-37385287

ABSTRACT

BACKGROUND: Identification of genetic causes of central precocious puberty have revealed epigenetic mechanisms as regulators of human pubertal timing. MECP2, an X-linked gene, encodes a chromatin-associated protein with a role in gene transcription. MECP2 loss-of-function mutations usually cause Rett syndrome, a severe neurodevelopmental disorder. Early pubertal development has been shown in several patients with Rett syndrome. The aim of this study was to explore whether MECP2 variants are associated with an idiopathic central precocious puberty phenotype. METHODS: In this translational cohort study, participants were recruited from seven tertiary centres from five countries (Brazil, Spain, France, the USA, and the UK). Patients with idiopathic central precocious puberty were investigated for rare potentially damaging variants in the MECP2 gene, to assess whether MECP2 might contribute to the cause of central precocious puberty. Inclusion criteria were the development of progressive pubertal signs (Tanner stage 2) before the age of 8 years in girls and 9 years in boys and basal or GnRH-stimulated LH pubertal concentrations. Exclusion criteria were the diagnosis of peripheral precocious puberty and the presence of any recognised cause of central precocious puberty (CNS lesions, known monogenic causes, genetic syndromes, or early exposure to sex steroids). All patients included were followed up at the outpatient clinics of participating academic centres. We used high-throughput sequencing in 133 patients and Sanger sequencing of MECP2 in an additional 271 patients. Hypothalamic expression of Mecp2 and colocalisation with GnRH neurons were determined in mice to show expression of Mecp2 in key nuclei related to pubertal timing regulation. FINDINGS: Between Jun 15, 2020, and Jun 15, 2022, 404 patients with idiopathic central precocious puberty (383 [95%] girls and 21 [5%] boys; 261 [65%] sporadic cases and 143 [35%] familial cases from 134 unrelated families) were enrolled and assessed. We identified three rare heterozygous likely damaging coding variants in MECP2 in five girls: a de novo missense variant (Arg97Cys) in two monozygotic twin sisters with central precocious puberty and microcephaly; a de novo missense variant (Ser176Arg) in one girl with sporadic central precocious puberty, obesity, and autism; and an insertion (Ala6_Ala8dup) in two unrelated girls with sporadic central precocious puberty. Additionally, we identified one rare heterozygous 3'UTR MECP2 insertion (36_37insT) in two unrelated girls with sporadic central precocious puberty. None of them manifested Rett syndrome. Mecp2 protein colocalised with GnRH expression in hypothalamic nuclei responsible for GnRH regulation in mice. INTERPRETATION: We identified rare MECP2 variants in girls with central precocious puberty, with or without mild neurodevelopmental abnormalities. MECP2 might have a role in the hypothalamic control of human pubertal timing, adding to the evidence of involvement of epigenetic and genetic mechanisms in this crucial biological process. FUNDING: Fundação de Amparo à Pesquisa do Estado de São Paulo, Conselho Nacional de Desenvolvimento Científico e Tecnológico, and the Wellcome Trust.


Subject(s)
Puberty, Precocious , Rett Syndrome , Animals , Child , Female , Humans , Male , Mice , Brazil , Cohort Studies , Follicle Stimulating Hormone , Gonadotropin-Releasing Hormone , Luteinizing Hormone/metabolism , Puberty, Precocious/genetics , Puberty, Precocious/diagnosis , Rett Syndrome/genetics , Rett Syndrome/complications
2.
Child Abuse Negl ; 130(Pt 3): 105358, 2022 08.
Article in English | MEDLINE | ID: mdl-34657749

ABSTRACT

Child welfare practices and policies are often disconnected from youth in care's perspectives and lived realities. Youth 'aging out' of care should be empowered to define their own needs, goals and success based on the unique context they are transitioning from. In research, this can be supported by engaging them as co-researchers through emancipatory approaches. Participatory Action Research (PAR) requires collaboration with those who are affected by the issue being studied in all aspects of the research, with the aim to build advocacy capacity and affect transformative social change. Photovoice employs photography and group dialogue - the fusion of images and words - as an empowerment tool, through which individuals can work together to represent their own lived experiences rather than have their stories told and interpreted by others. This is a particularly powerful approach in engaging youth with care experience, as they are often systemically disenfranchised, isolated and in need of connections to the community. This article presents the Relationships Matter for Youth 'Aging Out' of Care project, a Participatory Action Research (PAR) photovoice research project with young people with lived experience, as a case study. The project aimed to take a closer look at the relationships that matter to youth from care and how they can be nurtured over time. Narratives about the experience of participating in the project are also featured, from the perspectives of three of the youth co-researchers. Some of the benefits, challenges and lessons learned are also explored, framed within the Relationships Matter project methodology and process. Recommendations for future social work research are also presented.


Subject(s)
Community-Based Participatory Research , Health Services Research , Social Justice , Adolescent , Aging , Community-Based Participatory Research/methods , Female , Humans , Male , Photography , Young Adult
3.
Int J Mol Sci ; 22(3)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499110

ABSTRACT

Patients harbouring mutations in genes encoding C-type natriuretic peptide (CNP; NPPC) or its receptor guanylyl cyclase B (GC-B, NPR2) suffer from severe growth phenotypes; loss-of-function mutations cause achondroplasia, whereas gain-of-function mutations cause skeletal overgrowth. Although most of the effects of CNP/GC-B on growth are mediated directly on bone, evidence suggests the natriuretic peptides may also affect anterior pituitary control of growth. Our previous studies described the expression of NPPC and NPR2 in a range of human pituitary tumours, normal human pituitary, and normal fetal human pituitary. However, the natriuretic peptide system in somatotropes has not been extensively explored. Here, we examine the expression and function of the CNP/GC-B system in rat GH3 somatolactotrope cell line and pituitary tumours from a cohort of feline hypersomatotropism (HST; acromegaly) patients. Using multiplex RT-qPCR, all three natriuretic peptides and their receptors were detected in GH3 cells. The expression of Nppc was significantly enhanced following treatment with either 100 nM TRH or 10 µM forskolin, yet only Npr1 expression was sensitive to forskolin stimulation; the effects of forskolin and TRH on Nppc expression were PKA- and MAPK-dependent, respectively. CNP stimulation of GH3 somatolactotropes significantly inhibited Esr1, Insr and Lepr expression, but dramatically enhanced cFos expression at the same time point. Oestrogen treatment significantly enhanced expression of Nppa, Nppc, Npr1, and Npr2 in GH3 somatolactotropes, but inhibited CNP-stimulated cGMP accumulation. Finally, transcripts for all three natriuretic peptides and receptors were expressed in feline pituitary tumours from patients with HST. NPPC expression was negatively correlated with pituitary tumour volume and SSTR5 expression, but positively correlated with D2R and GHR expression. Collectively, these data provide mechanisms that control expression and function of CNP in somatolactotrope cells, and identify putative transcriptional targets for CNP action in somatotropes.


Subject(s)
Mutation , Natriuretic Peptide, C-Type/metabolism , Pituitary Neoplasms/metabolism , Receptors, Atrial Natriuretic Factor/metabolism , Acromegaly/metabolism , Animals , Cats , Cell Line , Colforsin/pharmacology , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Estrogens/metabolism , Female , Male , Phenotype , Pituitary Gland/metabolism , Rats , Rats, Wistar , Thyrotropin-Releasing Hormone/pharmacology
4.
ACS Appl Mater Interfaces ; 13(2): 2371-2381, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33404209

ABSTRACT

This work describes the preparation and characterization of printed biodegradable polymer (polylactic acid) capsules made in two different shapes: pyramid and rectangular capsules about 1 and 11 µm in size. Obtained core-shell capsules are described in terms of their morphology, loading efficiency, cargo release profile, cell cytotoxicity, and cell uptake. Both types of capsules showed monodisperse size and shape distribution and were found to provide sufficient stability to encapsulate small water-soluble molecules and to retain them for several days and ability for intracellular delivery. Capsules of 1 µm size can be internalized by HeLa cells without causing any toxicity effect. Printed capsules show unique characteristics compared with other drug delivery systems such as a wide range of possible cargoes, triggered release mechanism, and highly controllable shape and size.


Subject(s)
Drug Compounding/methods , Drug Delivery Systems , Polyesters/chemistry , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Capsules/chemistry , Cell Line , Doxycycline/administration & dosage , Doxycycline/pharmacokinetics , Drug Compounding/instrumentation , Equipment Design , HeLa Cells , Humans , Mice , Particle Size , Printing, Three-Dimensional/instrumentation
5.
Nanoscale ; 12(14): 7735-7748, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32211625

ABSTRACT

Nanoengineered vehicles have the potential to deliver cargo drugs directly to disease sites, but can potentially be cleared by immune system cells or lymphatic drainage. In this study we explore the use of magnetism to hold responsive particles at a delivery site, by incorporation of superparamagnetic iron oxide nanoparticles (SPIONs) into layer-by-layer (LbL) microcapsules. Microcapsules with SPIONs were rapidly phagocytosed by cells but did not trigger cellular ROS synthesis within 24 hours of delivery nor affect cell viability. In a non-directional cell migration assay, SPION containing microcapsules significantly inhibited movement of phagocytosing cells when placed in a magnetic field. Similarly, under flow conditions, a magnetic field retained SPION containing microcapsules at a physiologic wall shear stress of 0.751 dyne cm-2. Even when the SPION content was reduced to 20%, the majority of microcapsules were still retained. Dexamethasone microcrystals were synthesised by solvent evaporation and underwent LbL encapsulation with inclusion of a SPION layer. Despite a lower iron to volume content of these structures compared to microcapsules, they were also retained under shear stress conditions and displayed prolonged release of active drug, beyond 30 hours, measured using a glucocorticoid sensitive reporter cell line generated in this study. Our observations suggest use of SPIONs for magnetic retention of LbL structures is both feasible and biocompatible and has potential application for improved local drug delivery.


Subject(s)
Capsules/chemistry , Dexamethasone/metabolism , Drug Carriers/chemistry , Magnetite Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Line , Cell Movement/drug effects , Cell Survival/drug effects , Dexamethasone/chemistry , Dexamethasone/pharmacology , Drug Liberation , Ferric Compounds/chemistry , Humans , Magnetic Fields , Microscopy, Confocal
6.
Cells ; 8(9)2019 09 14.
Article in English | MEDLINE | ID: mdl-31540096

ABSTRACT

C-type natriuretic peptide (CNP) is the most conserved member of the mammalian natriuretic peptide family, and is implicated in the endocrine regulation of growth, metabolism and reproduction. CNP is expressed throughout the body, but is particularly abundant in the central nervous system and anterior pituitary gland. Pituitary gonadotropes are regulated by pulsatile release of gonadotropin releasing hormone (GnRH) from the hypothalamus, to control reproductive function. GnRH and CNP reciprocally regulate their respective signalling pathways in αT3-1 gonadotrope cells, but effects of pulsatile GnRH stimulation on CNP expression has not been explored. Here, we examine the sensitivity of the natriuretic peptide system in LßT2 and αT3-1 gonadotrope cell lines to continuous and pulsatile GnRH stimulation, and investigate putative CNP target genes in gonadotropes. Multiplex RT-qPCR assays confirmed that primary mouse pituitary tissue express Nppc,Npr2 (encoding CNP and guanylyl cyclase B (GC-B), respectively) and Furin (a CNP processing enzyme), but failed to express transcripts for Nppa or Nppb (encoding ANP and BNP, respectively). Pulsatile, but not continuous, GnRH stimulation of LßT2 cells caused significant increases in Nppc and Npr2 expression within 4 h, but failed to alter natriuretic peptide gene expression in αT3-1 cells. CNP enhanced expression of cJun, Egr1, Nr5a1 and Nr0b1, within 8 h in LßT2 cells, but inhibited Nr5a1 expression in αT3-1 cells. Collectively, these data show the gonadotrope natriuretic peptide system is sensitive to pulsatile GnRH signalling, and gonadotrope transcription factors are putative CNP-target genes. Such findings represent additional mechanisms by which CNP may regulate reproductive function.


Subject(s)
Gonadotrophs/metabolism , Natriuretic Peptide, C-Type/metabolism , Cells, Cultured , Gonadotrophs/drug effects , Gonadotropin-Releasing Hormone/pharmacology , Humans , Natriuretic Peptide, C-Type/genetics
7.
Sci Data ; 5: 180292, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30532078

ABSTRACT

A national-scale quantification of metabolic energy flow in streams and rivers can improve understanding of the temporal dynamics of in-stream activity, links between energy cycling and ecosystem services, and the effects of human activities on aquatic metabolism. The two dominant terms in aquatic metabolism, gross primary production (GPP) and aerobic respiration (ER), have recently become practical to estimate for many sites due to improved modeling approaches and the availability of requisite model inputs in public datasets. We assembled inputs from the U.S. Geological Survey and National Aeronautics and Space Administration for October 2007 to January 2017. We then ran models to estimate daily GPP, ER, and the gas exchange rate coefficient for 356 streams and rivers across the continental United States. We also gathered potential explanatory variables and spatial information for cross-referencing this dataset with other datasets of watershed characteristics. This dataset offers a first national assessment of many-day time series of metabolic rates for up to 9 years per site, with a total of 490,907 site-days of estimates.

8.
Reproduction ; 156(4): 313-330, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30306765

ABSTRACT

Equine chorionic girdle trophoblast cells play important endocrine and immune functions critical in supporting pregnancy. Very little is known about the genes and pathways that regulate chorionic girdle trophoblast development. Our aim was to identify genes and signalling pathways active in vivo in equine chorionic girdle trophoblast within a critical 7-days window. We exploited the late implantation of the equine conceptus to obtain trophoblast tissue. An Agilent equine 44K microarray was performed using RNA extracted from chorionic girdle and chorion (control) from equine pregnancy days 27, 30, 31 and 34 (n = 5), corresponding to the initiation of chorionic girdle trophoblast proliferation, differentiation and migration. Data were analysed using R packages limma and maSigPro, Ingenuity Pathway Analysis and DAVID and verified using qRT-PCR, promoter analysis, western blotting and migration assays. Microarray analysis showed gene expression (absolute log FC >2, FDR-adjusted P < 0.05) was rapidly and specifically induced in the chorionic girdle between days 27 and 34 (compared to day 27, day 30 = 116, day 31 = 317, day 34 = 781 genes). Pathway analysis identified 35 pathways modulated during chorionic girdle development (e.g. FGF, integrin, Rho GTPases, MAPK) including pathways that have limited description in mammalian trophoblast (e.g. IL-9, CD40 and CD28 signalling). Rho A and ERK/MAPK activity was confirmed as was a role for transcription factor ELF5 in regulation of the CGB promoter. The purity and accessibility of chorionic girdle trophoblast proved to be a powerful resource to identify candidate genes and pathways involved in early equine placental development.


Subject(s)
Horses/embryology , Trophoblasts/metabolism , Animals , Female , Gene Expression , Horses/metabolism , Male , Placentation , Pregnancy , Signal Transduction , Transcriptome
9.
Article in English | MEDLINE | ID: mdl-29755409

ABSTRACT

Equine chorionic gonadotrophin (eCG) is a placental glycoprotein critical for early equine pregnancy and used therapeutically in a number of species to support reproductive activity. The factors in trophoblast that transcriptionally regulate eCGß-subunit (LHB), the gene which confers the hormones specificity for the receptor, are not known. The aim of this study was to determine if glial cells missing 1 regulates LHB promoter activity. Here, studies of the LHB proximal promoter identified four binding sites for glial cells missing 1 (GCM1) and western blot analysis confirmed GCM1 was expressed in equine chorionic girdle (ChG) and surrounding tissues. Luciferase assays demonstrated endogenous activity of the LHB promoter in BeWo choriocarcinoma cells with greatest activity by a proximal 335 bp promoter fragment. Transactivation studies in COS7 cells using an equine GCM1 expression vector showed GCM1 could transactivate the proximal 335 bp LHB promoter. Chromatin immunoprecipitation using primary ChG trophoblast cells showed GCM1 to preferentially bind to the most proximal GCM1-binding site over site 2. Mutation of site 1 but not site 2 resulted in a loss of endogenous promoter activity in BeWo cells and failure of GCM1 to transactivate the promoter in COS-7 cells. Together, these data show that GCM1 binds to site 1 in the LHB promoter but also requires the upstream segment of the LHB promoter between -119 bp and -335 bp of the translation start codon for activity. GCM1 binding partners, ETV1, ETV7, HOXA13, and PITX1, were found to be differentially expressed in the ChG between days 27 and 34 and are excellent candidates for this role. In conclusion, GCM1 was demonstrated to drive the LHB promoter, through direct binding to a predicted GCM1-binding site, with requirement for another factor(s) to bind the proximal promoter to exert this function. Based on these findings, we hypothesize that ETV7 and HOXA13 act in concert with GCM1 to initiate LHB transcription between days 30 and 31, with ETV1 partnering with GCM1 to maintain transcription.

10.
Methods Mol Biol ; 1651: 23-32, 2017.
Article in English | MEDLINE | ID: mdl-28801897

ABSTRACT

Chromatin immunoprecipitation (ChIP) has become a widely used methodology for assessment of protein/DNA interactions. The technique allows the analysis of direct binding of transcription factors to gene promoters, identification of histone modifications, and localization of DNA modifying enzymes. Antibodies conjugated to agarose beads can be utilized to immunoprecipitate specific proteins, cross-linked to sheared chromatin regions to which they are bound endogenously. With downstream applications including quantitative real-time polymerase chain reaction (qRT-PCR), genome-wide sequencing (ChIP-seq), microarray analysis (ChIP-chip), and mass spectrometry (ChIP-MS), the technique enables comprehensive assessment of protein/DNA interactions. Here I describe ChIP, followed by qRT-PCR, to assess direct binding of a single protein to multiple predicted binding sites within a gene promoter.


Subject(s)
Chromatin Immunoprecipitation/methods , Chromatin/metabolism , DNA/metabolism , Promoter Regions, Genetic , Real-Time Polymerase Chain Reaction/methods , Transcription Factors/metabolism , Animals , Base Sequence , Binding Sites , Chromatin/chemistry , Chromatin/genetics , DNA/chemistry , DNA/genetics , DNA-Binding Proteins/metabolism , Humans , Protein Binding
11.
Sci Data ; 4: 170053, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28440790

ABSTRACT

Climate change has already influenced lake temperatures globally, but understanding future change is challenging. The response of lakes to changing climate drivers is complex due to the nature of lake-atmosphere coupling, ice cover, and stratification. To better understand the diversity of lake responses to climate change and give managers insight on individual lakes, we modelled daily water temperature profiles for 10,774 lakes in Michigan, Minnesota, and Wisconsin for contemporary (1979-2015) and future (2020-2040 and 2080-2100) time periods with climate models based on the Representative Concentration Pathway 8.5, the worst-case emission scenario. In addition to lake-specific daily simulated temperatures, we derived commonly used, ecologically relevant annual metrics of thermal conditions for each lake. We include all supporting lake-specific model parameters, meteorological drivers, and archived code for the model and derived metric calculations. This unique dataset offers landscape-level insight into the impact of climate change on lakes.

12.
Glob Chang Biol ; 23(4): 1463-1476, 2017 04.
Article in English | MEDLINE | ID: mdl-27608297

ABSTRACT

Temperate lakes may contain both coolwater fish species such as walleye (Sander vitreus) and warmwater fish species such as largemouth bass (Micropterus salmoides). Recent declining walleye and increasing largemouth bass populations have raised questions regarding the future trajectories and management actions for these species. We developed a thermodynamic model of water temperatures driven by downscaled climate data and lake-specific characteristics to estimate daily water temperature profiles for 2148 lakes in Wisconsin, US, under contemporary (1989-2014) and future (2040-2064 and 2065-2089) conditions. We correlated contemporary walleye recruitment and largemouth bass relative abundance to modeled water temperature, lake morphometry, and lake productivity, and projected lake-specific changes in each species under future climate conditions. Walleye recruitment success was negatively related and largemouth bass abundance was positively related to water temperature degree days. Both species exhibited a threshold response at the same degree day value, albeit in opposite directions. Degree days were predicted to increase in the future, although the magnitude of increase varied among lakes, time periods, and global circulation models (GCMs). Under future conditions, we predicted a loss of walleye recruitment in 33-75% of lakes where recruitment is currently supported and a 27-60% increase in the number of lakes suitable for high largemouth bass abundance. The percentage of lakes capable of supporting abundant largemouth bass but failed walleye recruitment was predicted to increase from 58% in contemporary conditions to 86% by mid-century and to 91% of lakes by late century, based on median projections across GCMs. Conversely, the percentage of lakes with successful walleye recruitment and low largemouth bass abundance was predicted to decline from 9% of lakes in contemporary conditions to only 1% of lakes in both future periods. Importantly, we identify up to 85 resilient lakes predicted to continue to support natural walleye recruitment. Management resources could target preserving these resilient walleye populations.


Subject(s)
Bass , Climate Change , Perches , Animals , Lakes , Population Dynamics , Wisconsin
13.
Ecol Lett ; 20(1): 98-111, 2017 01.
Article in English | MEDLINE | ID: mdl-27889953

ABSTRACT

Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experience periods of snow and ice cover. Relatively little is known of winter ecology in these systems, due to a historical research focus on summer 'growing seasons'. We executed the first global quantitative synthesis on under-ice lake ecology, including 36 abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal differences and connections as well as how seasonal differences vary with geophysical factors. Plankton were more abundant under ice than expected; mean winter values were 43.2% of summer values for chlorophyll a, 15.8% of summer phytoplankton biovolume and 25.3% of summer zooplankton density. Dissolved nitrogen concentrations were typically higher during winter, and these differences were exaggerated in smaller lakes. Lake size also influenced winter-summer patterns for dissolved organic carbon (DOC), with higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation, phytoplankton and zooplankton community composition showed few systematic differences between seasons, although literature suggests that seasonal differences are frequently lake-specific, species-specific, or occur at the level of functional group. Within the subset of lakes that had longer time series, winter influenced the subsequent summer for some nutrient variables and zooplankton biomass.


Subject(s)
Ecosystem , Ice Cover , Lakes , Plankton/physiology , Seasons
14.
PLoS One ; 11(11): e0164979, 2016.
Article in English | MEDLINE | ID: mdl-27828974

ABSTRACT

Understanding and managing dynamic coastal landscapes for beach-dependent species requires biological and geological data across the range of relevant environments and habitats. It is difficult to acquire such information; data often have limited focus due to resource constraints, are collected by non-specialists, or lack observational uniformity. We developed an open-source smartphone application called iPlover that addresses these difficulties in collecting biogeomorphic information at piping plover (Charadrius melodus) nest sites on coastal beaches. This paper describes iPlover development and evaluates data quality and utility following two years of collection (n = 1799 data points over 1500 km of coast between Maine and North Carolina, USA). We found strong agreement between field user and expert assessments and high model skill when data were used for habitat suitability prediction. Methods used here to develop and deploy a distributed data collection system have broad applicability to interdisciplinary environmental monitoring and modeling.


Subject(s)
Charadriiformes/physiology , Data Collection/methods , Ecosystem , Smartphone , Software , Animal Migration/physiology , Animals , Atlantic Ocean , Bathing Beaches , Conservation of Natural Resources/methods , Data Collection/instrumentation , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Geography , Islands , Nesting Behavior/physiology , Reproducibility of Results , United States
15.
Reproduction ; 152(3): 171-84, 2016 09.
Article in English | MEDLINE | ID: mdl-27280409

ABSTRACT

Pregnancy-specific glycoproteins (PSGs) are members of the carcinoembryonic antigen cell adhesion molecule (CEACAM) family that are secreted by trophoblast cells. PSGs may modulate immune, angiogenic and platelet responses during pregnancy. Until now, PSGs are only found in species that have a highly invasive (hemochorial) placentation including humans, mice and rats. Surprisingly, analyzing the CEACAM gene family of the horse, which has a non-invasive epitheliochorial placenta, with the exception of the transient endometrial cups, we identified equine CEACAM family members that seem to be related to PSGs of rodents and primates. We identified seven genes that encode secreted PSG-like CEACAMs Phylogenetic analyses indicate that they evolved independently from an equine CEACAM1-like ancestor rather than from a common PSG-like ancestor with rodents and primates. Significantly, expression of PSG-like genes (CEACAM44, CEACAM48, CEACAM49 and CEACAM55) was found in non-invasive as well as invasive trophoblast cells such as purified chorionic girdle cells and endometrial cup cells. Chorionic girdle cells are highly invasive trophoblast cells that invade the endometrium of the mare where they form endometrial cups and are in close contact with maternal immune cells. Therefore, the microenvironment of invasive equine trophoblast cells has striking similarities to the microenvironment of trophoblast cells in hemochorial placentas, suggesting that equine PSG-like CEACAMs and rodent and primate PSGs have undergone convergent evolution. This is supported by our finding that equine PSG-like CEACAM49 exhibits similar activity to certain rodent and human PSGs in a functional assay of platelet-fibrinogen binding. Our results have implications for understanding the evolution of PSGs and their functions in maternal-fetal interactions.


Subject(s)
Biological Evolution , Carcinoembryonic Antigen/metabolism , Glycoproteins/metabolism , Placenta/metabolism , Pregnancy Proteins/metabolism , Trophoblasts/metabolism , Animals , Female , Glycoproteins/classification , Horses , Humans , Phylogeny , Pregnancy
16.
Sci Data ; 2: 150008, 2015.
Article in English | MEDLINE | ID: mdl-25977814

ABSTRACT

Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985-2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.

17.
Arthritis Rheumatol ; 67(5): 1182-92, 2015 May.
Article in English | MEDLINE | ID: mdl-25604080

ABSTRACT

OBJECTIVE: We have previously shown, in a cohort of untreated rheumatoid arthritis (RA) patients, that the suppressive function of Treg cells is defective. However, other studies in cohorts of patients with established RA have shown that Treg cell function is normal. We hypothesized that treatment may restore Treg cell function and lead to reduced disease activity. The aim of this study was to investigate whether treatment with methotrexate (MTX) can result in epigenetic changes that lead to restoration of the Treg cell suppressive function in RA. METHODS: Peripheral blood samples from RA patients were assessed using (3) H-thymidine incorporation to measure Treg cell suppression of T cell proliferation, and by enzyme-linked immunosorbent assay to determine Treg cell suppression of interferon-γ production. CTLA-4 and FoxP3 expression was measured by flow cytometry and quantitative polymerase chain reaction (qPCR) in Treg cells from healthy individuals and RA patients. CD4+ T cells isolated from healthy individuals were cultured with interleukin-2 (IL-2), IL-6, and tumor necrosis factor α in the presence or absence of MTX, and FoxP3 expression was determined using qPCR and flow cytometry. Methylation of the FOXP3 upstream enhancer was analyzed by bisulfite sequencing PCR. RESULTS: Defective Treg cell function was observed only in RA patients who had not been treated with MTX, whereas Treg cells from MTX-exposed RA patients had restored suppressive function. This restored suppression was associated with increased expression of FoxP3 and CTLA-4 in Treg cells. Bisulfite sequencing PCR of Treg cells cultured in MTX revealed a significant reduction in methylation of the FOXP3 upstream enhancer. CONCLUSION: This study identifies a novel mechanism of action of MTX, in which treatment of RA patients with MTX restores defective Treg cell function through demethylation of the FOXP3 locus, leading to a subsequent increase in FoxP3 and CTLA-4 expression.


Subject(s)
Antirheumatic Agents/pharmacology , Arthritis, Rheumatoid/immunology , Cell Proliferation/drug effects , DNA Methylation/drug effects , Enhancer Elements, Genetic/drug effects , Forkhead Transcription Factors/drug effects , Methotrexate/pharmacology , RNA, Messenger/drug effects , T-Lymphocytes, Regulatory/drug effects , Adult , Aged , Arthritis, Rheumatoid/drug therapy , CTLA-4 Antigen/drug effects , CTLA-4 Antigen/metabolism , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Female , Forkhead Transcription Factors/genetics , Humans , Interferon-gamma/drug effects , Interferon-gamma/metabolism , Leukocytes, Mononuclear , Male , Middle Aged , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , T-Lymphocytes, Regulatory/metabolism
18.
Eur J Immunol ; 44(10): 2968-78, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25042153

ABSTRACT

Treg-cell function is compromised in rheumatoid arthritis (RA). As the master regulator of Treg cells, FOXP3 controls development and suppressive function. Stable Treg-cell FOXP3 expression is epigenetically regulated; constitutive expression requires a demethylated Treg-specific demethylated region. Here, we hypothesised that methylation of the FOXP3 locus is altered in Treg cells of established RA patients. Methylation analysis of key regulatory regions in the FOXP3 locus was performed on Treg cells from RA patients and healthy controls. The FOXP3 Treg-specific demethylated region and proximal promoter displayed comparable methylation profiles in RA and healthy-donor Treg cells. We identified a novel differentially methylated region (DMR) upstream of the FOXP3 promoter, with enhancer activity sensitive to methylation-induced silencing. In RA Treg cells we observed significantly reduced DMR methylation and lower DNA methyltransferase (DNMT1/3A) expression compared with healthy Treg cells. Furthermore, DMR methylation negatively correlated with FOXP3 mRNA expression, and Treg cells isolated from rheumatoid factor negative RA patients were found to express significantly higher levels of FOXP3 than Treg cells from RhF-positive patients, with an associated decrease in DMR methylation. In conclusion, the novel DMR is involved in the regulation of Treg-cell FOXP3 expression, but this regulation is lost post-transcriptionally in RA Treg cells.


Subject(s)
Arthritis, Rheumatoid/immunology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Gene Expression Regulation/immunology , T-Lymphocytes, Regulatory/immunology , Adult , Aged , Arthritis, Rheumatoid/genetics , DNA Methylation/genetics , DNA Methylation/immunology , Female , Flow Cytometry , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction
19.
Arthritis Rheumatol ; 66(9): 2344-54, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24891289

ABSTRACT

OBJECTIVE: Functionally impaired Treg cells expressing abnormally low levels of CTLA-4 have been well documented in rheumatoid arthritis (RA). However, the molecular defect underlying this reduced expression is unknown. The aims of this study were to assess the role of DNA methylation in regulating CTLA-4 expression in Treg cells isolated from RA patients and to elucidate the mechanism of their reduced suppressor function. METHODS: CTLA-4 expression in Treg cells from RA patients and healthy controls was measured by quantitative polymerase chain reaction (PCR) and flow cytometry. Methylation of the CTLA-4 gene promoter was analyzed by bisulfite-specific PCR, followed by sequencing. Methylation-dependent transcriptional activity of the CTLA-4 gene promoter was measured by luciferase assay, and NF-AT binding to the CTLA-4 gene promoter was determined by chromatin immunoprecipitation. The role of CTLA-4 expression in controlling Teff cells was analyzed using an autologous mixed lymphocyte reaction. RESULTS: Down-regulation of CTLA-4 expression in Treg cells from RA patients was caused by methylation of a previously unidentified NF-AT binding site within the CTLA-4 gene promoter. As a consequence, Treg cells were unable to induce expression and activation of the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO), which in turn resulted in a failure to activate the immunomodulatory kynurenine pathway. CONCLUSION: We show for the first time that epigenetic modifications contribute to defective Treg cell function in RA through an inability to activate the IDO pathway. Therefore, this study sets a precedent for investigating potential therapeutic strategies aimed at reinforcing the IDO pathway in RA patients.


Subject(s)
Arthritis, Rheumatoid/immunology , CTLA-4 Antigen/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Promoter Regions, Genetic , Signal Transduction/physiology , T-Lymphocytes, Regulatory/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , CTLA-4 Antigen/genetics , DNA Methylation , Down-Regulation , Humans , T-Lymphocytes, Regulatory/immunology
20.
Endocrinology ; 155(8): 3054-64, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24848867

ABSTRACT

TGFß superfamily proteins, acting via SMAD (Sma- and Mad-related protein)2/3 pathways, regulate placental function; however, the role of SMAD1/5/8 pathway in the placenta is unknown. This study investigated the functional role of bone morphogenetic protein (BMP)4 signaling through SMAD1/5 in terminal differentiation of primary chorionic gonadotropin (CG)-secreting trophoblast. Primary equine trophoblast cells or placental tissues were isolated from day 27-34 equine conceptuses. Detected by microarray, RT-PCR, and quantitative RT-PCR, equine chorionic girdle trophoblast showed increased gene expression of receptors that bind BMP4. BMP4 mRNA expression was 20- to 60-fold higher in placental tissues adjacent to the chorionic girdle compared with chorionic girdle itself, suggesting BMP4 acts primarily in a paracrine manner on the chorionic girdle. Stimulation of chorionic girdle-trophoblast cells with BMP4 resulted in a dose-dependent and developmental stage-dependent increase in total number and proportion of terminally differentiated binucleate cells. Furthermore, BMP4 treatment induced non-CG-secreting day 31 chorionic girdle trophoblast cells to secrete CG, confirming a specific functional response to BMP4 stimulation. Inhibition of SMAD2/3 signaling combined with BMP4 treatment further enhanced differentiation of trophoblast cells. Phospho-SMAD1/5, but not phospho-SMAD2, expression as determined by Western blotting was tightly regulated during chorionic girdle trophoblast differentiation in vivo, with peak expression of phospho-SMAD1/5 in vivo noted at day 31 corresponding to maximal differentiation response of trophoblast in vitro. Collectively, these experiments demonstrate the involvement of BMP4-dependent pathways in the regulation of equine trophoblast differentiation in vivo and primary trophoblast differentiation in vitro via activation of SMAD1/5 pathway, a previously unreported mechanism of TGFß signaling in the mammalian placenta.


Subject(s)
Bone Morphogenetic Protein 4/metabolism , Cell Differentiation , Chorionic Gonadotropin/metabolism , Smad Proteins, Receptor-Regulated/metabolism , Trophoblasts/cytology , Animals , Female , Horses , Pregnancy , Primary Cell Culture , Signal Transduction/physiology , Smad1 Protein/physiology , Smad5 Protein/physiology , Smad8 Protein/physiology , Transforming Growth Factor beta/metabolism , Trophoblasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...