Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 286
Filter
1.
Sci Total Environ ; 928: 172285, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38599395

ABSTRACT

Tryptophan-like fluorescence (TLF) is used to indicate anthropogenic inputs of dissolved organic matter (DOM), typically from wastewater, in rivers. We hypothesised that other sources of DOM, such as groundwater and planktonic microbial biomass can also be important drivers of riverine TLF dynamics. We sampled 19 contrasting sites of the River Thames, UK, and its tributaries. Multivariate mixed linear models were developed for each site using 15 months of weekly water quality observations and with predictor variables selected according to the statistical significance of their linear relationship with TLF following a stepwise procedure. The variables considered for inclusion in the models were potassium (wastewater indicator), nitrate (groundwater indicator), chlorophyll-a (phytoplankton biomass), and Total bacterial Cells Counts (TCC) by flow cytometry. The wastewater indicator was included in the model of TLF at 89 % of sites. Groundwater was included in 53 % of models, particularly those with higher baseflow indices (0.50-0.86). At these sites, groundwater acted as a negative control on TLF, diluting other potential sources. Additionally, TCC was included positively in the models of six (32 %) sites. The models on the Thames itself using TCC were more rural sites with lower sewage inputs. Phytoplankton biomass (Chlorophyll-a) was only used in two (11 %) site models, despite the seasonal phytoplankton blooms. It is also notable that, the wastewater indicator did not always have the strongest evidence for inclusion in the models. For example, there was stronger evidence for the inclusion of groundwater and TCC than wastewater in 32 % and 5 % of catchments, respectively. Our study underscores the complex interplay of wastewater, groundwater, and planktonic microbes, driving riverine TLF dynamics, with their influence determined by site characteristics.


Subject(s)
Environmental Monitoring , Rivers , Tryptophan , Rivers/chemistry , Environmental Monitoring/methods , Tryptophan/analysis , Wastewater/chemistry , Groundwater/chemistry , Fluorescence , Water Pollutants, Chemical/analysis , Phytoplankton , Chlorophyll A/analysis
2.
Microb Genom ; 9(5)2023 05.
Article in English | MEDLINE | ID: mdl-37145848

ABSTRACT

Wastewater-based epidemiology (WBE) for population-level surveillance of antimicrobial resistance (AMR) is gaining significant traction, but the impact of wastewater sampling methods on results is unclear. In this study, we characterized taxonomic and resistome differences between single-timepoint-grab and 24 h composites of wastewater influent from a large UK-based wastewater treatment work [WWTW (population equivalent: 223 435)]. We autosampled hourly influent grab samples (n=72) over three consecutive weekdays, and prepared additional 24 h composites (n=3) from respective grabs. For taxonomic profiling, metagenomic DNA was extracted from all samples and 16S rRNA gene sequencing was performed. One composite and six grabs from day 1 underwent metagenomic sequencing for metagenomic dissimilarity estimation and resistome profiling. Taxonomic abundances of phyla varied significantly across hourly grab samples but followed a repeating diurnal pattern for all 3 days. Hierarchical clustering grouped grab samples into four time periods dissimilar in both 16S rRNA gene-based profiles and metagenomic distances. 24H-composites resembled mean daily phyla abundances and showed low variability of taxonomic profiles. Of the 122 AMR gene families (AGFs) identified across all day 1 samples, single grab samples identified a median of six (IQR: 5-8) AGFs not seen in the composite. However, 36/36 of these hits were at lateral coverage <0.5 (median: 0.19; interquartile range: 0.16-0.22) and potential false positives. Conversely, the 24H-composite identified three AGFs not seen in any grab with higher lateral coverage (0.82; 0.55-0.84). Additionally, several clinically significant human AGFs (bla VIM, bla IMP, bla KPC) were intermittently or completely missed by grab sampling but captured by the 24 h composite. Wastewater influent undergoes significant taxonomic and resistome changes on short timescales potentially affecting interpretation of results based on sampling strategy. Grab samples are more convenient and potentially capture low-prevalence/transient targets but are less comprehensive and temporally variable. Therefore, we recommend 24H-composite sampling where feasible. Further validation and optimization of WBE methods is vital for its development into a robust AMR surveillance approach.


Subject(s)
Metagenome , Wastewater , Humans , RNA, Ribosomal, 16S/genetics
3.
Sci Total Environ ; 842: 156848, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-35750190

ABSTRACT

The quality and health of many of our vital freshwater systems are poor. To tackle this with ever increasing pressures from anthropogenic and climatic changes, we must improve water quality monitoring and devise and implement more appropriate water quality parameters. Recent research has highlighted the potential for Peak T fluorescence (tryptophan-like fluorescence, TLF) to monitor microbial activity in aquatic systems. The VLux TPro (Chelsea Technologies Ltd., UK), an in situ real-time fluorimeter, was deployed in different urban freshwater bodies within Kolkata (West Bengal, India) during March 2019. This study is the first to apply this technology in surface waters within a densely populated urban area. Spot-sampling was also undertaken at 13 sampling locations enabling physicochemical analysis, bacterial enumeration and determination of nutrient (nitrate and phosphate) concentrations. This case study has demonstrated the ability of an in situ fluorimeter, VLux TPro, to successfully identify both biological contamination events and potential elevated microbial activity, related to nutrient loading, in complex surface freshwaters, without the need for expensive and time-consuming laboratory analysis.


Subject(s)
Environmental Monitoring , Water Quality , Fluorescence , Fresh Water , Tryptophan/analysis
4.
Environ Int ; 162: 107171, 2022 04.
Article in English | MEDLINE | ID: mdl-35290866

ABSTRACT

OBJECTIVES: We systematically reviewed studies using wastewater for AMR surveillance in human populations, to determine: (i) evidence of concordance between wastewater-human AMR prevalence estimates, and (ii) methodological approaches which optimised identifying such an association, and which could be recommended as standard. We used Lin's concordance correlation coefficient (CCC) to quantify concordance between AMR prevalence estimates in wastewater and human compartments (where CCC = 1 reflects perfect concordance), and logistic regression to identify study features (e.g. sampling methods) associated with high agreement studies (defined as >70% of within-study wastewater-human AMR prevalence comparisons within ±10%). RESULTS: Of 8,867 records and 441 full-text methods reviewed, 33 studies were included. AMR prevalence data was extractable from 24 studies conducting phenotypic-only (n = 7), genotypic-only (n = 1) or combined (n = 16) AMR detection. Overall concordance of wastewater-human AMR prevalence estimates was reasonably high for both phenotypic (CCC = 0.85 [95% CI 0.8-0.89]) and genotypic approaches (CCC = 0.88 (95% CI 0.84-0.9)) despite diverse study designs, bacterial species investigated and phenotypic/genotypic targets. No significant relationships between methodological approaches and high agreement studies were identified using logistic regression; however, this was limited by inconsistent reporting of study features, significant heterogeneity in approaches and limited sample size. Based on a secondary, descriptive synthesis, studies conducting composite sampling of wastewater influent, longitudinal sampling >12 months, and time-/location-matched sampling of wastewater and human compartments generally had higher agreement. CONCLUSION: Wastewater-based surveillance of AMR appears promising, with high overall concordance between wastewater and human AMR prevalence estimates in studies irrespective of heterogenous approaches. However, our review suggests future work would benefit from: time-/location-matched sampling of wastewater and human populations, composite sampling of influent, and sampling >12 months for longitudinal studies. Further research and clear and consistent reporting of study methods is required to identify optimal practice.


Subject(s)
Drug Resistance, Bacterial , Wastewater , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Humans , Wastewater-Based Epidemiological Monitoring
5.
Anal Chim Acta ; 1141: 221-229, 2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33248656

ABSTRACT

Accurate measurement of naturally occurring radionuclides in blast furnace slag, a by-product of the steel industry, is required for compliance with building regulations where it is often used as an ingredient in cement. A matrix reference blast furnace slag material has been developed to support traceability in these measurements. Raw material provided by a commercial producer underwent stability and homogeneity testing, as well as characterisation of matrix constituents, to provide a final candidate reference material. The radionuclide content was then determined during a comparison exercise that included 23 laboratories from 14 countries. Participants determined the activity per unit mass for 226Ra, 232Th and 40K using a range of techniques. The consensus values obtained from the power-moderated mean of the reported participant results were used as indicative activity per unit mass values for the three radionuclides: A0(226Ra) = 106.3 (34) Bq·kg-1, A0(232Th) = 130.0 (48) Bq·kg-1 and A0(40K) = 161 (11) Bq·kg-1 (where the number in parentheses is the numerical value of the combined standard uncertainty referred to the corresponding last digits of the quoted result). This exercise helps to address the current shortage of NORM industry reference materials, putting in place infrastructure for production of further reference materials.

6.
S Afr J Sports Med ; 32(1): v32i1a8456, 2020.
Article in English | MEDLINE | ID: mdl-36818989

ABSTRACT

Background: Growing evidence highlights that elite rugby union players experience poor sleep quality and quantity which can be detrimental for performance. Objectives: This study aimed to i) compare objective sleep measures of rugby union players between age categories over a one week period, and ii) compare self-reported measures of sleep to wristwatch actigraphy as the criterion. Methods: Two hundred and fifty-three nights of sleep were recorded from 38 players representing four different age groups (i.e. under 16, under 18, senior academy, elite senior) in a professional rugby union club in the United Kingdom (UK). Linear mixed models and magnitude-based decisions were used for analysis. Results: The analysis of sleep schedules showed that U16 players went to bed and woke up later than their older counterparts (small differences). In general, players obtained seven hours of sleep per night, with trivial or unclear differences between age groups. The validity analysis highlighted a large relationship between objective and subjective sleep measures for bedtime (r = 0.56 [0.48 to 0.63]), and get up time (r = 0.70 [0.63 to 0.75]). A large standardised typical error (1.50 [1.23 to 1.88]) was observed for total sleep time. Conclusion: This study highlights that differences exist in sleep schedules between rugby union players in different age categories that should be considered when planning training. Additionally, self-reported measures overestimated sleep parameters. Coaches should consider these results to optimise sleep habits of their players and should be careful with self-reported sleep measures.

7.
Sci Total Environ ; 653: 1240-1252, 2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30759564

ABSTRACT

Catchment based solutions are being sought to mitigate water quality pressures and achieve multiple benefits but their success depends on a sound understanding of catchment functioning. Novel approaches to monitoring and data analysis are urgently needed. In this paper we explore the potential of river water fluorescence at the catchment scale in understanding nutrient concentrations, sources and pathways. Data were collected from across the River Thames basin from January 2012 to March 2015. Analysing emission excitation matrices (EEMs) using both PARAFAC and optimal area averaging produced consistent results for humic-like component 1 and tryptophan-like component 4 in the absence of a subset of samples that exhibited an unusual peak; illustrating the importance of inspecting the entire EEM before using peak averaging methods. Strong relationships between fluorescence components and dissolved organic carbon (DOC), soluble reactive phosphorus (SRP), and ammonium clearly demonstrated its potential, in this study basin, as a field based surrogate for nutrients. Analysing relationships between fluorescence, catchment characteristics and boron from across the basin enabled new insights into the provenance of nutrients. These include evidence for diffuse sources of DOC from near surface hydrological pathways (i.e. soil horizons); point source inputs of nutrients from sewage effluent discharges; and diffuse contributions of nutrients from agriculture and/or sewage (e.g. septic tanks). The information gained by broad scale catchment wide monitoring of fluorescence could support catchment managers in (a) prioritising subcatchments for nutrient mitigation; (b) providing information on relative nutrient source contributions; and (c) providing evidence of the effectiveness of investment in pollution mitigation measures. The collection of high resolution fluorescence data at the catchment scale and, in particular, over shorter event timescales would complement broad scale assessments by enhancing our hydro-biogeochemical process understanding.

8.
Water Res ; 137: 301-309, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29554534

ABSTRACT

We assessed the utility of online fluorescence spectroscopy for the real-time evaluation of the microbial quality of untreated drinking water. Online fluorimeters were installed on the raw water intake at four groundwater-derived UK public water supplies alongside existing turbidity sensors that are used to forewarn of the presence of microbial contamination in the water industry. The fluorimeters targeted fluorescent dissolved organic matter (DOM) peaks at excitation/emission wavelengths of 280/365 nm (tryptophan-like fluorescence, TLF) and 280/450 nm (humic-like fluorescence, HLF). Discrete samples were collected for Escherichia coli, total bacterial cell counts by flow cytometry, and laboratory-based fluorescence and absorbance. Both TLF and HLF were strongly correlated with E. coli (ρ = 0.71-0.77) and total bacterial cell concentrations (ρ = 0.73-0.76), whereas the correlations between turbidity and E. coli (ρ = 0.48) and total bacterial cell counts (ρ = 0.40) were much weaker. No clear TLF peak was observed at the sites and all apparent TLF was considered to be optical bleed-through from the neighbouring HLF peak. Therefore, a HLF fluorimeter alone would be sufficient to evaluate the microbial water quality at these sources. Fluorescent DOM was also influenced by site operations such as pump start-up and the precipitation of cations on the sensor windows. Online fluorescent DOM sensors are a better indicator of the microbial quality of untreated drinking water than turbidity and they have wide-ranging potential applications within the water industry.


Subject(s)
Drinking Water/microbiology , Spectrometry, Fluorescence/methods , Water Quality , Drinking Water/chemistry , England , Escherichia coli , Flow Cytometry , Fluorescence , Groundwater/microbiology , Tryptophan/chemistry , Water Microbiology , Water Supply
9.
Anal Chim Acta ; 1000: 67-74, 2018 Feb 13.
Article in English | MEDLINE | ID: mdl-29289325

ABSTRACT

Lead-210 (210Pb) can be present at high activity concentrations, in residues arising from the petroleum, mineral processing and chemical industries. Although 210Pb itself poses a low radiological risk, the nuclide decays via 210Bi to the alpha emitting and highly radiotoxic 210Po. Therefore, rapid, accurate determination of 210Pb is essential for assessing the radiological risk to plant operators and appropriate sentencing of waste. Unfortunately, direct measurement of 210Pb by gamma spectrometry is hindered by its weak gamma-ray emission at 46.5 keV, which is readily attenuated by mineral matrices. This paper demonstrates the extent to which 210Pb can be underestimated during routine analysis by an inter-laboratory exercise involving five accredited laboratories and a wide range of scales from diverse industrial sources. Two methods of addressing errors in 210Pb analysis are highlighted; the first, involving lithium tetraborate fusion prior to gamma spectrometry shows promise but is not suitable for all 210Pb-containing phases. The second method, requiring calculation of matrix attenuation factors for a representative fingerprint sample, was applied successfully to deposits from the steel and gas industries. However, its wider application depends on detailed chemical and mineralogical characterisation for each of the major categories of mineral scale found and at present, there is an acute lack of suitable certified reference materials.

10.
Sci Total Environ ; 624: 366-376, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29258037

ABSTRACT

Recent river studies have observed rapid phytoplankton dynamics, driven by diurnal cycling and short-term responses to storm events, highlighting the need to adopt new high-frequency characterisation methods to understand these complex ecological systems. This study utilised two such analytical methods; pigment analysis by high performance liquid chromatography (HPLC) and cell counting by flow cytometry (FCM), alongside traditional chlorophyll spectrophotometry and light microscopy screening, to characterise the major phytoplankton bloom of 2015 in the River Thames, UK. All analytical techniques observed a rapid increase in chlorophyll a concentration and cell abundances from March to early June, caused primarily by a diatom bloom. Light microscopy identified a shift from pennate to centric diatoms during this period. The initial diatom bloom coincided with increased HPLC peridinin concentrations, indicating the presence of dinoflagellates which were likely to be consuming the diatom population. The diatom bloom declined rapidly in early June, coinciding with a storm event. There were low chlorophyll a concentrations (by both HPLC and spectrophotometric methods) throughout July and August, implying low biomass and phytoplankton activity. However, FCM revealed high abundances of pico-chlorophytes and cyanobacteria through July and August, showing that phytoplankton communities remain active and abundant throughout the summer period. In combination, these techniques are able to simultaneously characterise a wider range of phytoplankton groups, with greater certainty, and provide improved understanding of phytoplankton functioning (e.g. production of UV inhibiting pigments by cyanobacteria in response to high light levels) and ecological status (through examination of pigment degradation products). Combined HPLC and FCM analyses offer rapid and cost-effective characterisation of phytoplankton communities at appropriate timescales. This will allow a more-targeted use of light microscopy to capture phytoplankton peaks or to investigate periods of rapid community succession. This will lead to greater system understanding of phytoplankton succession in response to biogeochemical drivers.


Subject(s)
Environmental Monitoring , Eutrophication , Phytoplankton/growth & development , Rivers , Chlorophyll/analysis , Chlorophyll A , Chromatography, High Pressure Liquid , Flow Cytometry , United Kingdom
11.
Mycorrhiza ; 27(7): 725-731, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28695334

ABSTRACT

A previous study of 76 plant species on Spitsbergen in the High Arctic concluded that structures resembling arbuscular mycorrhizas were absent from roots. Here, we report a survey examining the roots of 13 grass and forb species collected from 12 sites on the island for arbuscular mycorrhizal (AM) colonisation. Of the 102 individuals collected, we recorded AM endophytes in the roots of 41 plants of 11 species (Alopecurus ovatus, Deschampsia alpina, Festuca rubra ssp. richardsonii, putative viviparous hybrids of Poa arctica and Poa pratensis, Poa arctica ssp. arctica, Trisetum spicatum, Coptidium spitsbergense, Ranunculus nivalis, Ranunculus pygmaeus, Ranunculus sulphureus and Taraxacum arcticum) sampled from 10 sites. Both coarse AM endophyte, with hyphae of 5-10 µm width, vesicles and occasional arbuscules, and fine endophyte, consisting of hyphae of 1-3 µm width and sparse arbuscules, were recorded in roots. Coarse AM hyphae, vesicles, arbuscules and fine endophyte hyphae occupied 1.0-30.7, 0.8-18.3, 0.7-11.9 and 0.7-12.8% of the root lengths of colonised plants, respectively. Principal component analysis indicated no associations between the abundances of AM structures in roots and edaphic factors. We conclude that the AM symbiosis is present in grass and forb roots on Spitsbergen.


Subject(s)
Endophytes/physiology , Magnoliopsida/microbiology , Mycorrhizae/physiology , Geography , Magnoliopsida/physiology , Svalbard , Symbiosis
12.
J Radioanal Nucl Chem ; 312(1): 105-110, 2017.
Article in English | MEDLINE | ID: mdl-28366971

ABSTRACT

Accurate, low-level measurement of 226Ra in high volume water samples requires rapid pre-concentration and robust separation techniques prior to measurement in order to comply with discharge limits and drinking water regulations. This study characterises the behaviour of 226Ra and interfering elements on recently developed TK100 (Triskem International) extraction chromatography resin. Distribution coefficients over a range of acid concentrations are given, along with an optimised procedure that shows rapid pre-concentration and separation of 226Ra on TK100 resin is achievable for high volume (1 L) water samples without the need for sample pre-treatment.

13.
Chemosphere ; 179: 127-138, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28364648

ABSTRACT

The solubility of uranium and thorium has been measured under the conditions anticipated in a cementitious, geological disposal facility for low and intermediate level radioactive waste. Similar solubilities were obtained for thorium in all media, comprising NaOH, Ca(OH)2 and water equilibrated with a cement designed as repository backfill (NRVB, Nirex Reference Vault Backfill). In contrast, the solubility of U(VI) was one order of magnitude higher in NaOH than in the remaining solutions. The presence of cellulose degradation products (CDP) results in a comparable solubility increase for both elements. Extended X-ray Absorption Fine Structure (EXAFS) data suggest that the solubility-limiting phase for uranium corresponds to a becquerelite-type solid whereas thermodynamic modelling predicts a poorly crystalline, hydrated calcium uranate phase. The solubility-limiting phase for thorium was ThO2 of intermediate crystallinity. No breakthrough of either uranium or thorium was observed in diffusion experiments involving NRVB after three years. Nevertheless, backscattering electron microscopy and microfocus X-ray fluorescence confirmed that uranium had penetrated about 40 µm into the cement, implying active diffusion governed by slow dissolution-precipitation kinetics. Precise identification of the uranium solid proved difficult, displaying characteristics of both calcium uranate and becquerelite.


Subject(s)
Environmental Restoration and Remediation/methods , Radioactive Waste/analysis , Refuse Disposal/methods , Thorium/analysis , Uranium/analysis , Water Pollutants, Radioactive/isolation & purification , Kinetics , Solubility , Solutions/chemistry , Thermodynamics
14.
Appl Radiat Isot ; 126: 31-34, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28236556

ABSTRACT

A novel and rapid method has been developed for pre-concentration and measurement of 226Ra in groundwater and discharge water samples using the latest generation triple quadrupole inductively coupled plasma mass spectrometry (ICP-QQQ-MS). Cation exchange and extraction chromatography are capable of pre-concentration factors of ~200 based on 1L samples. The sensitivity and interference removal capability of ICP-QQQ-MS was assessed from spiked groundwaters, with the introduction of He collision gas required to minimise instrument background in high-matrix samples. The technique developed is potentially capable of detecting 226Ra activities as low as 5mBqL-1 when combined with pre-concentration prior to measurement.

15.
Gene ; 612: 19-24, 2017 May 15.
Article in English | MEDLINE | ID: mdl-27984194

ABSTRACT

TRIT1 is a highly conserved tRNA isopentenyl transferase that modifies a subset of tRNAs in human cells and is a candidate tumor suppressor in lung cancer in certain ethnic populations. The yeast homologue, Mod5, has similar tRNA-modifying functions in the cytoplasm and is required for the transcriptional silencing activity of RNA polymerase II promoters near tRNA genes in the nucleus, a phenomenon termed tRNA gene mediated (tgm) silencing. Furthermore, Mod5 can fold into amyloid fibers in vitro and in vivo, which confers resistance to certain fungicides in yeast. Since TRIT1 complements both tRNA modifying and tgm-silencing activities in yeast where the Mod5 gene has been deleted, it seemed possible that TRIT1 might also have amyloid-forming capabilities. Here we show that TRIT1, like Mod5, directly binds to tRNAs that are both substrate and non-substrates for modification with similar affinity, and to an unstructured, non-tRNA. Binding appears to involve distinct protein-RNA multimers which decrease in electrophoretic mobility as the protein to RNA ratio increases. Furthermore, we characterize TRIT1 as a novel human amyloid fiber forming protein. We discuss these data in light of TRIT1's functional roles and possible implications for disease.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Amyloid/biosynthesis , RNA, Transfer/metabolism , Alkyl and Aryl Transferases/chemistry , Amino Acid Sequence , Humans , In Vitro Techniques , Molecular Sequence Data , Sequence Homology, Amino Acid
16.
Sci Total Environ ; 569-570: 1489-1499, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27422725

ABSTRACT

River phytoplankton blooms can pose a serious risk to water quality and the structure and function of aquatic ecosystems. Developing a greater understanding of the physical and chemical controls on the timing, magnitude and duration of blooms is essential for the effective management of phytoplankton development. Five years of weekly water quality monitoring data along the River Thames, southern England were combined with hourly chlorophyll concentration (a proxy for phytoplankton biomass), flow, temperature and daily sunlight data from the mid-Thames. Weekly chlorophyll data was of insufficient temporal resolution to identify the causes of short term variations in phytoplankton biomass. However, hourly chlorophyll data enabled identification of thresholds in water temperature (between 9 and 19°C) and flow (<30m(3)s(-1)) that explained the development of phytoplankton populations. Analysis showed that periods of high phytoplankton biomass and growth rate only occurred when these flow and temperature conditions were within these thresholds, and coincided with periods of long sunshine duration, indicating multiple stressor controls. Nutrient concentrations appeared to have no impact on the timing or magnitude of phytoplankton bloom development, but severe depletion of dissolved phosphorus and silicon during periods of high phytoplankton biomass may have contributed to some bloom collapses through nutrient limitation. This study indicates that for nutrient enriched rivers such as the Thames, manipulating residence time (through removing impoundments) and light/temperature (by increasing riparian tree shading) may offer more realistic solutions than reducing phosphorus concentrations for controlling excessive phytoplankton biomass.


Subject(s)
Eutrophication , Phytoplankton/growth & development , Rivers/chemistry , Water Quality , Chlorophyll/analysis , England , Environmental Monitoring , Seasons , Stress, Physiological , Temperature , Water Movements
17.
Environ Sci Process Impacts ; 18(6): 677-89, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27192431

ABSTRACT

Dissolved oxygen (DO) concentrations showed a striking pattern in a multi-year study of the River Enborne, a small river in SE England. In each of three years (2010-2012), maximum DO concentrations were attained in mid-April, preceded by a period of steadily increasing diurnal amplitudes, followed by a steady reduction in both amplitude and concentration. Flow events during the reduction period reduce DO to low concentrations until the following spring. Evidence is presented that this pattern is mainly due to benthic algal growth which is eventually suppressed by the growth of the riparian tree canopy. Nitrate and silicate concentrations are too high to inhibit the growth of either benthic algae or phytoplankton, but phosphate concentrations might have started to reduce growth if the tree canopy development had been delayed. This interpretation is supported by evidence from weekly flow cytometry measurements and analysis of the diurnal, seasonal and annual patterns of nutrient concentrations. As the tree canopy develops, the river switches from an autotrophic to a heterotrophic state. The results support the use of riparian shading to help control algal growth, and highlight the risks of reducing riparian shade.


Subject(s)
Chlorophyta/growth & development , Ecosystem , Eutrophication , Phytoplankton/growth & development , Rivers , Sunlight , Trees/growth & development , Autotrophic Processes , Conservation of Natural Resources , England , Environmental Monitoring , Heterotrophic Processes , Nitrates/analysis , Phosphates/analysis , Seasons
18.
J Hazard Mater ; 314: 211-219, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27198634

ABSTRACT

This work describes the solubility of nickel under the alkaline conditions anticipated in the near field of a cementitious repository for intermediate level nuclear waste. The measured solubility of Ni in 95%-saturated Ca(OH)2 solution is similar to values obtained in water equilibrated with a bespoke cementitious backfill material, on the order of 5×10(-7)M. Solubility in 0.02M NaOH is one order of magnitude lower. For all solutions, the solubility limiting phase is Ni(OH)2; powder X-ray diffraction and scanning transmission electron microscopy indicate that differences in crystallinity are the likely cause of the lower solubility observed in NaOH. The presence of cellulose degradation products causes an increase in the solubility of Ni by approximately one order of magnitude. The organic compounds significantly increase the rate of Ni transport under advective conditions and show measurable diffusive transport through intact monoliths of the cementitious backfill material.

19.
Vet J ; 211: 32-8, 2016 May.
Article in English | MEDLINE | ID: mdl-27040919

ABSTRACT

Photosensitization, also known as photodermatitis, occurs when phototoxic or photoactive substances accumulate in the skin and interact with sunlight to result in an often severe, crusting, itching or painful dermatitis in unpigmented and/or lightly haired areas of the skin. Primary photosensitization, caused by direct ingestion of photosensitizing agents, has been reported anecdotally in horses after ingestion of alfalfa hay. Between 2004 and 2014, several large outbreaks of primary photosensitization in horses fed primarily alfalfa hay were investigated in California. Alfalfa hay samples were collected and carefully examined for the presence of known photosensitizing plants and pesticide residues but none were identified. Select hay samples were evaluated for unusual fungal infestation and for phototoxicity assay using a specific Candida albicans assay; results were negative. In the 2004 outbreak, a feeding study was conducted with three horses exclusively fed alfalfa hay that was suspected to have caused the outbreak. Two weeks after ingestion of alfalfa hay, two horses developed several lesions in non-pigmented skin characterized as chronic ulcerative and necrotizing dermatitis with superficial vasculitis, which was consistent with photosensitization. In the 2014 outbreak, seven different implicated alfalfa hay samples were analyzed for chlorophyll a and b, and pheophorbide a. These compounds had been suspected to play a role in alfalfa-induced primary photosensitization. The chlorophyll contents ranged from 0.90 to 2.30 mg/g in the alfalfa hay samples, compared to 1.37 and 2.94 mg/g in locally grown alfalfa and orchard grass hay. The pheophorbide a levels ranged from 3.36 to 89.87 µg/g in alfalfa samples compared to 81.39 and 42.33 µg/g in control alfalfa and orchard grass hay samples. These findings eliminate chlorophyll a, chlorophyll b, and pheophorbide a as possible causes for alfalfa-hay induced primary photosensitization.


Subject(s)
Animal Feed/adverse effects , Disease Outbreaks/veterinary , Horse Diseases/epidemiology , Medicago sativa/chemistry , Photosensitivity Disorders/veterinary , Animals , California/epidemiology , Chlorophyll/analogs & derivatives , Chlorophyll/analysis , Chlorophyll A , Diet/veterinary , Female , Horse Diseases/etiology , Horses , Male , Photosensitivity Disorders/epidemiology , Photosensitivity Disorders/etiology , Silage/adverse effects
20.
J Hazard Mater ; 305: 21-29, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26642443

ABSTRACT

This work presents the study of the solubility of selenium under cementitious conditions and its diffusion, as SeO3(2-), through monolithic cement samples. The solubility studies were carried out under alkaline conditions similar to those anticipated in the near-field of a cement-based repository for low- and intermediate-level radioactive waste. Experiments were conducted in NaOH solution, 95%-saturated Ca(OH)2, water equilibrated with a potential backfill material (Nirex reference vault backfill, NRVB) and in solutions containing cellulose degradation products, with and without reducing agents. The highest selenium concentrations were found in NaOH solution. In the calcium-containing solutions, analysis of the precipitates suggests that the solubility controlling phase is Ca2SeO3(OH)2·2H2O, which appears as euhedral rhombic crystals. The presence of cellulose degradation products caused an increase in selenium concentration, possibly due to competitive complexation, thereby, limiting the amount of calcium available for precipitation. Iron coupons had a minor effect on selenium solubility in contrast to Na2S2O4, suggesting that effective reduction of Se(IV) occurs only at Eh values below -300mV. Radial through-diffusion experiments on NRVB and in a fly ash cement showed no evidence of selenium breakthrough after one year. However, autoradiography of the exposed surfaces indicated that some migration had occurred and that selenium was more mobile in the higher porosity backfill than in the fly ash cement.

SELECTION OF CITATIONS
SEARCH DETAIL
...