Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 15545, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36109552

ABSTRACT

Humic ligands from boreal rivers have been identified as important sources of iron-binding ligands to the coastal marine environment but remain poorly characterized. A novel method using Fourier transformed infrared spectroscopy (FTIR) was used to identify and quantify iron-binding ligands present in a boreal river in Newfoundland, Canada. 20 to 35% of the total iron load was carried through an artificial salinity gradient, and remained in solution at 35 salinity. Using FTIR combined with linear regression and 2D correlation analysis, we identified two pools of organic ligands, with different behaviour with regards to iron across the salinity gradient. The weaker ligand pool consisted of alkenes, ethers, and esters, and was found to release iron to flocculation at low salinities, and not contribute to iron transport into the marine environment. The stronger ligand group contained carboxylic acids and aliphatic functional groups. This group appears to contain two subgroups, one which was able to retain iron in the dissolved phase at 35 salinity, and another that flocculated out with iron across the salinity gradient. The strong ligands that retain iron in solution through the salinity gradient provide a much-needed source of the micronutrient to the coastal and marine environment, while the other subgroup sequesters iron and carbon in estuarine sediments. The balance between these two subgroups appears to be controlled by the hydrographic and weather conditions at the time of sampling, suggesting a dynamic ligand-iron relationship throughout the year, impacting the biogeochemical cycles of both iron and carbon in contrasting ways.


Subject(s)
Salinity , Seawater , Alkenes , Carbon/analysis , Carboxylic Acids , Ethers , Iron/chemistry , Ligands , Micronutrients/analysis , Seawater/chemistry
2.
PLoS One ; 9(9): e107500, 2014.
Article in English | MEDLINE | ID: mdl-25233197

ABSTRACT

This study reports increasing iron concentrations in rivers draining into the Baltic Sea. Given the decisive role of iron to the structure and biogeochemical function of aquatic ecosystems, this trend is likely one with far reaching consequences to the receiving system. What those consequences may be depends on the fate of the iron in estuarine mixing. We here assess the stability of riverine iron by mixing water from seven boreal rivers with artificial sea salts. The results show a gradual loss of iron from suspension with increasing salinity. However, the capacity of the different river waters to maintain iron in suspension varied greatly, i.e. between 1 and 54% of iron was in suspension at a salinity of 30. The variability was best explained by iron:organic carbon ratios in the riverine waters--the lower the ratio the more iron remained in suspension. Water with an initially low iron:organic carbon ratio could keep even higher than ambient concentrations of Fe in suspension across the salinity gradient, as shown in experiments with iron amendments. Moreover, there was a positive relationship between the molecular size of the riverine organic matter and the amount of iron in suspension. In all, the results point towards a remarkably high transport capacity of iron from boreal rivers, suggesting that increasing concentrations of iron in river mouths may result in higher concentrations of potentially bioavailable iron in the marine system.


Subject(s)
Ecosystem , Iron/chemistry , Rivers/chemistry , Salts/chemistry , Environmental Monitoring , Marine Biology , Oceans and Seas , Salinity , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...