Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Manage ; 27(3): 397-409, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11148765

ABSTRACT

Many recent trail degradation problems have been attributed to mountain biking because of its alleged capacity to do more damage than other activities, particularly hiking. This study compared the effects of experimentally applied mountain biking and hiking on the understory vegetation and soil of a deciduous forest. Five different intensities of biking and hiking (i.e., 0, 25, 75, 200 and 500 passes) were applied to 4-m-long x 1-m-wide lanes in Boyne Valley Provincial Park, Ontario, Canada. Measurements of plant stem density, species richness, and soil exposure were made before treatment, two weeks after treatment, and again one year after treatment. Biking and hiking generally had similar effects on vegetation and soil. Two weeks after treatment, stem density and species richness were reduced by up to 100% of pretreatment values. In addition, the amount of soil exposed increased by up to 54%. One year later, these treatment effects were no longer detectable. These results indicate that at a similar intensity of activity, the short-term impacts of mountain biking and hiking may not differ greatly in the undisturbed area of a deciduous forest habitat. The immediate impacts of both activities can be severe but rapid recovery should be expected when the activities are not allowed to continue. Implications of these results for trail recreation are discussed.


Subject(s)
Bicycling , Conservation of Natural Resources , Recreation , Trees , Walking , Ecosystem , Environmental Monitoring , Humans , Plants , Population Dynamics , Soil
2.
New Phytol ; 148(3): 433-444, 2000 Dec.
Article in English | MEDLINE | ID: mdl-33863021

ABSTRACT

The germination characteristics of Stellaria media (common chickweed) were investigated over a range of constant temperatures and degrees of moisture stress in order to assess the suitability of hydrothermal time as a basis for modelling germination under field conditions. Maximum percentage germination occurred over a much narrower temperature range around the optimum temperature than previously seen for cultivated crop seed. The entire final percentage germination response to temperature in water was well described by two probit curves, and this model was extended to describe the data at all water potentials at a temperature close to the optimum. The implications of the reduction in germination at nonoptimal temperatures are discussed with respect to the interpretation of germination progress curves and conditional dormancy. After adjusting for maximum percentage germination, a hydrothermal time model was found to fit the data set well within the conditions normally encountered in horticultural seedbeds. This separation of the final percentage germination presents a flexible modelling approach that allows for the different levels of dormancy typically expressed within weed populations. By contrast with many previously reported species, S. media had a synchronous germination rate within the population at any given temperature/water potential combination. This synchronous germination of at least a proportion of the population over a wide range of temperature and water potentials might have ecological significance for the opportunistic germination behaviour of this weed species.

SELECTION OF CITATIONS
SEARCH DETAIL
...