Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 5(5): 1849-57, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23223914

ABSTRACT

The processes by which single-wall carbon nanohorns are transformed by iron nanoparticles at high temperatures to form "nanooysters", hollow graphene capsules containing metal particles that resemble pearls in an oyster shell, are examined both experimentally and theoretically. Quantum chemical molecular dynamics (QM/MD) simulations based on the density-functional tight-binding (DFTB) method were performed to investigate their growth mechanism. The simulations suggest that the nanoparticles self-encapsulate to form single-wall nanooysters (SWNOs) by assisting the assembly of dangling carbon bonds, accompanied by migration of the metal particle inside the carbon structure. These calculations indicate that the structure of the oyster consists primarily of hexagons along with a few pentagons that are predominantly formed near the former nanohorn edges as a result of their fusion. Experimental observations of large diameter nanoparticles inside multiwall carbon shells indicate that migration and coalescence of many iron particles must occur, perhaps by the convergence of smaller SWNOs or carbon-coated Fe-nanoparticles, whereby the void space is generated by the corresponding increase in the carbon shell surface area to metal nanoparticle volume.

2.
Small ; 8(10): 1534-42, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22419542

ABSTRACT

Very short arrays of continuous single-wall carbon nanotubes (SWNTs) are grown incrementally in steps as small as 25 nm using pulsed chemical vapor deposition (CVD). In-situ optical extinction measurements indicate that over 98% of the nanotubes reinitiate growth on successive gas pulses, and high-resolution transmission electron microscopy (HR-TEM) images show that the SWNTs do not exhibit segments, caps, or noticeable sidewall defects resulting from repeatedly stopping and restarting growth. Time-resolved laser reflectivity (3-ms temporal resolution) is used to record the nucleation and growth kinetics for each fast (0.2 s) gas pulse and to measure the height increase of the array in situ, providing a method to incrementally grow short nanotube arrays to precise heights. Derivatives of the optical reflectivity signal reveal distinct temporal signatures for both nucleation and growth kinetics, with their amplitude ratio on the first gas pulse serving as a good predictor for the evolution of the growth of the nanotube ensemble into a coordinated array. Incremental growth by pulsed CVD is interpreted in the context of autocatalytic kinetic models as a special processing window in which a sufficiently high flux of feedstock gas drives the nucleation and rapid growth phases of a catalyst nanoparticle ensemble to occur within the temporal period of the gas pulse, but without inducing growth termination.

SELECTION OF CITATIONS
SEARCH DETAIL
...