Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1855: 363-370, 2019.
Article in English | MEDLINE | ID: mdl-30426432

ABSTRACT

Recent advances in agarose gel electrophoresis protocols established conditions for the high-resolution separation of DNA and RNA using higher voltages combined with short run times. We subsequently developed a protocol for using these conditions to measure the binding affinity of a protein for an RNA ligand on an agarose gel. This native gel mobility shift assay is highly accessible, using common molecular biology reagents found in most laboratories. Here, we describe the protocol for carrying out native agarose gel electrophoresis to characterize the binding affinity of a protein for an RNA ligand. The electrophoresis time is less than 10 min, which minimizes the dissociation of protein and ligand. We have used the p19 siRNA binding protein and its cognate dsRNA ligand to demonstrate strategies for identifying optimal conditions to measure apparent binding constants using this agarose gel shift system.


Subject(s)
Electrophoresis, Agar Gel/methods , Electrophoretic Mobility Shift Assay/methods , RNA-Binding Proteins/metabolism , RNA/metabolism , Animals , Gels/chemistry , Humans , Oligonucleotides/metabolism , Protein Binding , Sepharose/chemistry
2.
J Microbiol Methods ; 133: 46-51, 2017 02.
Article in English | MEDLINE | ID: mdl-28024984

ABSTRACT

Many plasmids used for gene cloning and heterologous protein expression in Escherichia coli cells are low copy number or single copy number plasmids. The extraction of these types of plasmids from small bacterial cell cultures produces low DNA yields. In this study, we have quantitated yields of low copy and single copy number plasmid DNAs after growth of cells in four widely used broths (SB, SOC, TB, and 2xYT) and compared results to those obtained with LB, the most common E. coli cell growth medium. TB (terrific broth) consistently generated the greatest amount of plasmid DNA, in agreement with its ability to produce higher cell titers. The superiority of TB was primarily due to its high levels of yeast extract (24g/L) and was independent of glycerol, a unique component of this broth. Interestingly, simply preparing LB with similarly high levels of yeast extract (LB24 broth) resulted in plasmid yields that were equivalent to those of TB. By contrast, increasing ampicillin concentration to enhance plasmid retention did not improve plasmid DNA recovery. These experiments demonstrate that yields of low and single copy number plasmid DNAs from minipreps can be strongly enhanced using simple and inexpensive media.


Subject(s)
DNA Copy Number Variations , DNA, Bacterial/isolation & purification , Escherichia coli/genetics , Bacteriological Techniques , Cloning, Molecular , Culture Media/chemistry , Plasmids
3.
Anal Biochem ; 511: 36-41, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27495142

ABSTRACT

Interactions between proteins and nucleic acids are frequently analyzed using electrophoretic mobility shift assays (EMSAs). This technique separates bound protein:nucleic acid complexes from free nucleic acids by electrophoresis, most commonly using polyacrylamide gels. The current study utilizes recent advances in agarose gel electrophoresis technology to develop a new EMSA protocol that is simpler and faster than traditional polyacrylamide methods. Agarose gels are normally run at low voltages (∼10 V/cm) to minimize heating and gel artifacts. In this study we demonstrate that EMSAs performed using agarose gels can be run at high voltages (≥20 V/cm) with 0.5 × TB (Tris-borate) buffer, allowing for short run times while simultaneously yielding high band resolution. Several parameters affecting band and image quality were optimized for the procedure, including gel thickness, agarose percentage, and applied voltage. Association of the siRNA-binding protein p19 with its target RNA was investigated using the new system. The agarose gel and conventional polyacrylamide gel methods generated similar apparent binding constants in side-by-side experiments. A particular advantage of the new approach described here is that the short run times (5-10 min) reduce opportunities for dissociation of bound complexes, an important concern in non-equilibrium nucleic acid binding experiments.


Subject(s)
Electrophoretic Mobility Shift Assay/methods , RNA-Binding Proteins/chemistry , RNA/chemistry , Electrophoresis, Agar Gel/methods , RNA/metabolism , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...