Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 12: 1361469, 2024.
Article in English | MEDLINE | ID: mdl-38544977

ABSTRACT

The synergy between biomolecules with inorganic nanomaterials and nanoparticles has been investigated over the past years, primarily to improve biomarker reception, generate signals, and amplify the signals generated. In this paper, several articles on aptamer-based and antibody-based electrochemical biosensors that target antigens were examined. Among the key characteristics identified were the electrochemical platform development, which includes the usage of nanomaterials as electroactive or electrocatalytic labels, crosslinking of the biological agent with inorganic compounds, and electrode coating to provide an electronic source and support efficient electron transfer. A single approach using labeled or unlabeled biological receptors has become advantageous due to its simple architecture and more straightforward application method. However, the dual system approach allows the incorporation of more nanomaterials to boost the signal and add more features to the electrochemical system. The dual system approach uses a capture and reporter probe in a competitive or sandwich detection format. The reporter probe is often labeled by an electroactive or electrocatalytic compound or immobilized in a nanocarrier, resulting in an increase in measured peak current in proportion to the target's concentration. The reported limit of detection and linear range for each platform is presented to assess its efficiency. Generally, the dual system aptasensor showed higher sensitivity, stability, and reproducibility than the immunosensor in comparable settings. The aptasensor showed promising results for the development of point-of-care type applications.

2.
Chemosphere ; 105: 100-5, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24462085

ABSTRACT

The effects of process conditions, including upward velocity inside the column, the amount of added seed and seed size, the pH value of the precipitant or the phosphate stream and the Ba/P molar ratio in a fluidized-bed reactor (FBR) were studied with a view to producing BaHPO4 crystals of significant size and maximize the removal of barium. XRD were used to identify the products that were collected from the FBR. Experimental results show that an upward velocity of 48 cmmin(-1) produced the largest BaHPO4 crystals with a size of around 0.84-1.0mm. The addition of seed crystals has no effect on barium removal. The use of a seed of a size in the ranges unseeded<0.149-0.29 mm<0.149 mm<0.29-0.42 mm produced increasing amounts of increasingly large crystals. The largest BaHPO4 crystals were obtained at pH 8.4-8.8 with a Ba/P molar ratio of 1.0. In the homogeneous and heterogeneous processes, around 98% of barium was removed at pH 8.4-8.6 and [Ba]/[P]=1.0. The XRD results show that a significant amount of barium phosphate (Ba3(PO4)2) was obtained at pH 11. The compounds BaHPO4 and BaO were present at a pH of below 10.


Subject(s)
Barium/chemistry , Phosphates/chemistry , Water Pollutants, Chemical/chemistry , Crystallization , Hydrogen-Ion Concentration , Waste Disposal, Fluid/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...