Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transplant ; 17(2): 77-88, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12709071

ABSTRACT

Each year, 55 000 organ transplants are performed worldwide. Cumulatively, the number of living organ recipients is now estimated to be over 300 000. Most of these transplant recipients will remain on immunosuppressive drugs for the remainder of their lives to prevent rejection episodes. Controlled doses of these drugs are required to prevent over-medication, which may leave the patient susceptible to opportunistic infection and drug toxicity effects, or under-dosing, which may lead to shortened graft survival because of rejection episodes. This paper describes the result of a multicenter study conducted at the Universities of Pittsburgh, Alabama and Maryland to evaluate an in vitro assay (CylexTM Immune Cell Function Assay) for the measurement of global immune response in transplant patients receiving immunosuppressive therapy. The assay uses a whole blood sample to maintain the presence of the drug during incubation. Following overnight incubation of blood with phytohemagglutinin (PHA), CD4 cells are selected using paramagnetic particles coated with a monoclonal antibody to the CD4 epitope. The CD4-positive cells are targeted as major immunosuppressive drugs are designed to specifically inhibit T-cell activation which has been implicated in rejection. The data generated at these three sites were submitted in support of an Food and Drug Association (FDA) application for the use of this assay in the detection of cell-mediated immunity in an immunosuppressed population. The assay was cleared by the FDA on April 2, 2002. This cross-sectional study was designed to establish ranges for reactivity of this bioassay in the assessment of functional immunity for an individual solid organ recipient at any point in time.


Subject(s)
Drug Monitoring , Immunity, Cellular , Immunoassay/methods , Transplantation Immunology , Adult , CD4 Lymphocyte Count , Case-Control Studies , Cross-Sectional Studies , Cyclosporine/blood , Female , Flow Cytometry , Humans , Immunosuppressive Agents/blood , Lymphocyte Activation/drug effects , Male , Middle Aged , Phytohemagglutinins/pharmacology , T-Lymphocytes/drug effects , Tacrolimus/blood
2.
Proc Natl Acad Sci U S A ; 100(7): 4179-84, 2003 Apr 01.
Article in English | MEDLINE | ID: mdl-12644703

ABSTRACT

The beta-chemokines RANTES (regulated on activation, normal T cell expressed and secreted), macrophage inflammatory protein-1alpha (MIP-1alpha), and MIP-1beta are the natural ligands of the HIV-1 coreceptor CCR5 and compete with the virus for receptor binding. We show that secretion of the beta-chemokines by activated lymphocytes starts before cellular DNA synthesis is detected and demonstrate that transient prolongation of the G(1) phase of the cell cycle by treatment with cytostatic drugs results in increased levels of the three chemokines in culture supernatants. Supernatants collected from peripheral blood mononuclear cells exposed to hydroxyurea, which arrests the cell cycle in late G(1), contained high levels of beta-chemokines. These supernatants were able to inhibit HIV-1 replication when added to cultures of infected lymphocytes. The observed antiviral effect likely was due to the increased levels of beta-chemokines RANTES, MIP-1alpha, and MIP-1beta because (i) supernatants greatly inhibited the replication of HIV-1 BaL, whereas they affected HIV-1 IIIb replication only slightly; (ii) neutralizing antibodies against the chemokines abrogated the antiviral effect of the supernatants; and (iii) the hydroxyurea concentrations shown to up-regulate chemokine levels were not sufficient to inhibit virus replication by depletion of intracellular nucleotide pools. Although antiviral properties have been reported previously for the cytostatic agents shown here to up-regulate beta-chemokine levels, our results provide an additional mechanism by which these drugs may exert antiviral activity. In summary, increased extracellular levels of anti-HIV-1 beta-chemokines resulting from transient prolongation of the G(1) phase of the lymphocyte cell cycle by treatment with cytostatic drugs may help to control the replication of CCR5-using strains of HIV-1.


Subject(s)
Chemokines, CC/physiology , G1 Phase/immunology , HIV-1/physiology , T-Lymphocytes/immunology , Cell Cycle , Cells, Cultured , HIV-1/drug effects , Humans , Hydroxyurea/pharmacology , Lymphocyte Activation , Tetradecanoylphorbol Acetate/pharmacology , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...