Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 64(8): 5037-5048, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33848153

ABSTRACT

Propionic acidemia (PA) and methylmalonic acidemia (MMA) are rare autosomal recessive disorders of propionyl-CoA (P-CoA) catabolism, caused by a deficiency in the enzymes P-CoA carboxylase and methylmalonyl-CoA (M-CoA) mutase, respectively. PA and MMA are classified as intoxication-type inborn errors of metabolism because the intramitochondrial accumulation of P-CoA, M-CoA, and other metabolites results in secondary inhibition of multiple pathways of intermediary metabolism, leading to organ dysfunction and failure. Herein, we describe the structure-activity relationships of a series of short-chain carboxylic acids which reduce disease-related metabolites in PA and MMA primary hepatocyte disease models. These studies culminated in the identification of 2,2-dimethylbutanoic acid (10, HST5040) as a clinical candidate for the treatment of PA and MMA. Additionally, we describe the in vitro and in vivo absorption, distribution, metabolism, and excretion profile of HST5040, data from preclinical studies, and the synthesis of the sodium salt of HST5040 for clinical trials.


Subject(s)
Amino Acid Metabolism, Inborn Errors/drug therapy , Butyrates/therapeutic use , Propionic Acidemia/drug therapy , Acyl Coenzyme A/metabolism , Amino Acid Metabolism, Inborn Errors/pathology , Animals , Area Under Curve , Butyrates/chemistry , Butyrates/metabolism , Cells, Cultured , Dogs , Drug Evaluation, Preclinical , Half-Life , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Mice , Models, Biological , Propionic Acidemia/pathology , ROC Curve , Rats , Structure-Activity Relationship
2.
Mol Genet Metab ; 133(1): 71-82, 2021 05.
Article in English | MEDLINE | ID: mdl-33741272

ABSTRACT

Propionic Acidemia (PA) and Methylmalonic Acidemia (MMA) are inborn errors of metabolism affecting the catabolism of valine, isoleucine, methionine, threonine and odd-chain fatty acids. These are multi-organ disorders caused by the enzymatic deficiency of propionyl-CoA carboxylase (PCC) or methylmalonyl-CoA mutase (MUT), resulting in the accumulation of propionyl-coenzyme A (P-CoA) and methylmalonyl-CoA (M-CoA in MMA only). Primary metabolites of these CoA esters include 2-methylcitric acid (MCA), propionyl-carnitine (C3), and 3-hydroxypropionic acid, which are detectable in both PA and MMA, and methylmalonic acid, which is detectable in MMA patients only (Chapman et al., 2012). We deployed liver cell-based models that utilized PA and MMA patient-derived primary hepatocytes to validate a small molecule therapy for PA and MMA patients. The small molecule, HST5040, resulted in a dose-dependent reduction in the levels of P-CoA, M-CoA (in MMA) and the disease-relevant biomarkers C3, MCA, and methylmalonic acid (in MMA). A putative working model of how HST5040 reduces the P-CoA and its derived metabolites involves the conversion of HST5040 to HST5040-CoA driving the redistribution of free and conjugated CoA pools, resulting in the differential reduction of the aberrantly high P-CoA and M-CoA. The reduction of P-CoA and M-CoA, either by slowing production (due to increased demands on the free CoA (CoASH) pool) or enhancing clearance (to replenish the CoASH pool), results in a net decrease in the CoA-derived metabolites (C3, MCA and MMA (MMA only)). A Phase 2 study in PA and MMA patients will be initiated in the United States.


Subject(s)
Amino Acid Metabolism, Inborn Errors/drug therapy , Methylmalonyl-CoA Decarboxylase/genetics , Methylmalonyl-CoA Mutase/genetics , Propionic Acidemia/drug therapy , Small Molecule Libraries/pharmacology , Acyl Coenzyme A/metabolism , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/pathology , Carnitine/metabolism , Cell Line , Citrates/metabolism , Hepatocytes/drug effects , Humans , Methylmalonyl-CoA Mutase/deficiency , Propionic Acidemia/genetics , Propionic Acidemia/pathology
3.
JHEP Rep ; 3(2): 100217, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33490936

ABSTRACT

BACKGROUND & AIMS: Increasing evidence highlights dietary fructose as a major driver of non-alcoholic fatty liver disease (NAFLD) pathogenesis, the majority of which is cleared on first pass through the hepatic circulation by enzymatic phosphorylation to fructose-1-phosphate via the ketohexokinase (KHK) enzyme. Without a current approved therapy, disease management emphasises lifestyle interventions, but few patients adhere to such strategies. New targeted therapies are urgently required. METHODS: We have used a unique combination of human liver specimens, a murine dietary model of NAFLD and human multicellular co-culture systems to understand the hepatocellular consequences of fructose administration. We have also performed a detailed nuclear magnetic resonance-based metabolic tracing of the fate of isotopically labelled fructose upon administration to the human liver. RESULTS: Expression of KHK isoforms is found in multiple human hepatic cell types, although hepatocyte expression predominates. KHK knockout mice show a reduction in serum transaminase, reduced steatosis and altered fibrogenic response on an Amylin diet. Human co-cultures exposed to fructose exhibit steatosis and activation of lipogenic and fibrogenic gene expression, which were reduced by pharmacological inhibition of KHK activity. Analysis of human livers exposed to 13C-labelled fructose confirmed that steatosis, and associated effects, resulted from the accumulation of lipogenic precursors (such as glycerol) and enhanced glycolytic activity. All of these were dose-dependently reduced by administration of a KHK inhibitor. CONCLUSIONS: We have provided preclinical evidence using human livers to support the use of KHK inhibition to improve steatosis, fibrosis, and inflammation in the context of NAFLD. LAY SUMMARY: We have used a mouse model, human cells, and liver tissue to test how exposure to fructose can cause the liver to store excess fat and become damaged and scarred. We have then inhibited a key enzyme within the liver that is responsible for fructose metabolism. Our findings show that inhibition of fructose metabolism reduces liver injury and fibrosis in mouse and human livers and thus this may represent a potential route for treating patients with fatty liver disease in the future.

4.
JACC Basic Transl Sci ; 3(5): 625-638, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30456334

ABSTRACT

The effects of the nitroxyl donor BMS-986231 on hemodynamics, left ventricular (LV) function, and pro-arrhythmic potential were assessed using canine heart failure models. BMS-986231 significantly (p < 0.05) increased LV end-systolic elastance, pre-load-recruitable stroke work, ejection fraction, stroke volume, cardiac output, ratio of early-to-late filling time integrals, and early mitral valve inflow velocity deceleration time. BMS-986231 significantly decreased LV filling pressures, end-diastolic stiffness, the time-constant of relaxation, end-diastolic wall stress, systemic vascular resistance, and myocardial oxygen consumption. BMS-986231 had little effect on heart rate and did not induce de novo arrhythmias. Thus, BMS-986231 has beneficial inotropic, lusitropic, and vasodilatory effects.

5.
Front Physiol ; 8: 894, 2017.
Article in English | MEDLINE | ID: mdl-29209225

ABSTRACT

The nitroxyl (HNO) prodrug, CXL-1020, induces vasorelaxation and improves cardiac function in canine models and patients with systolic heart failure (HF). HNO's unique mechanism of action may be applicable to a broader subset of cardiac patients. This study investigated the load-independent safety and efficacy of CXL-1020 in two rodent (rat) models of diastolic heart failure and explored potential drug interactions with common HF background therapies. In vivo left-ventricular hemodynamics/pressure-volume relationships assessed before/during a 30 min IV infusion of CXL-1020 demonstrated acute load-independent positive inotropic, lusitropic, and vasodilatory effects in normal rats. In rats with only diastolic dysfunction due to bilateral renal wrapping (RW) or pronounced diastolic and mild systolic dysfunction due to 4 weeks of chronic isoproterenol exposure (ISO), CXL-1020 attenuated the elevated LV filling pressures, improved the end diastolic pressure volume relationship, and accelerated relaxation. CXL-1020 facilitated Ca2+ re-uptake and enhanced myocyte relaxation in isolated cardiomyocytes from ISO rats. Compared to milrinone, CXL-1020 more effectively improved Ca2+ reuptake in ISO rats without concomitant chronotropy, and did not enhance Ca2+ entry via L-type Ca2+ channels nor increase myocardial arrhythmias/ectopic activity. Acute-therapy with CXL-1020 improved ventricular relaxation and Ca2+ cycling, in the setting of chronic induced diastolic dysfunction. CXL-1020's lusitropic effects were greater than those seen with the cAMP-dependent agent milrinone, and unlike milrinone it did not produce chronotropy or increased ectopy. HNO is a promising new potential therapy for both systolic and diastolic heart failure.

6.
Am J Clin Pathol ; 125 Suppl: S71-7, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16830958

ABSTRACT

Although some autoantibodies do not cause hemolysis and their workup is performed routinely, others might lead to life-threatening hemolysis. In the latter situation, the pathologist often is involved in the urgent decision to transfuse before completion of the evaluation. However, every effort must be made to exclude the presence of concurrent alloantibodies. This identification of RBC autoantibodies is less common than alloantibody identification, and the evaluation often requires techniques and expertise available only in specialized laboratories. Unlike emergency release of units for trauma victims, an autoantibody by definition will react with all units in the inventory; thus, all crossmatches are expected to be incompatible. To avoid additional untoward consequences of transfusion, there has to be close communication between the consulting pathologist and the clinician, including close monitoring of the patient during and after transfusion. This review is intended to serve as a guide to general pathologists in the appropriate evaluation and interpretation of laboratory tests in the diagnosis and management of autoimmune hemolytic anemia.


Subject(s)
Anemia, Hemolytic, Autoimmune/diagnosis , Anemia, Hemolytic, Autoimmune/therapy , Blood Transfusion , Autoantibodies/blood , Coombs Test , Erythrocytes/immunology , Humans , Pathology, Clinical/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...