Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Anal Bioanal Chem ; 387(7): 2401-9, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17265084

ABSTRACT

During the past seven years, several states within the US have enacted regulations that limit the amounts of selected non-nutritive elements in fertilizers. Internationally, several countries, including Japan, China, and Australia, and the European Union also limit the amount of selected elements in fertilizers. The elements of interest include As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se, and Zn. Fertilizer manufacturers and state regulatory authorities, faced with meeting and verifying these limits, need to develop analytical methods for determination of the elements of concern and to validate results obtained using these methods. Until now, there were no certified reference materials available with certified mass fraction values for all elements of interest in a blended, multi-nutrient fertilizer matrix. A new standard reference material (SRM) 695 trace elements in multi-nutrient fertilizer, has been developed to help meet these needs. SRM 695 has recently been issued with certified mass fraction values for seventeen elements, reference values for an additional five elements, and information values for two elements. The certificate of analysis includes an addendum listing percentage recovery for eight of these elements, determined using an acid-extraction inductively-coupled plasma optical-emission spectrometry (ICP-OES) method recently developed and tested by members of the Association of American Plant Food Control Officials.


Subject(s)
Chemistry Techniques, Analytical/methods , Chemistry Techniques, Analytical/standards , Fertilizers/analysis , Trace Elements/analysis , Mass Spectrometry/methods , Reference Standards , Reference Values , Reproducibility of Results , Sensitivity and Specificity , Spectrophotometry, Atomic/methods
2.
Brain Res Cogn Brain Res ; 12(1): 117-30, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11489615

ABSTRACT

The primary purpose of this investigation was to examine the cortical mechanisms underlying visuomotor integration in an experiment directly manipulating visual feedback (control-signal gain) as participants executed a grasping task. This was accomplished by assessing human electroencephalograms in both time and frequency domains and relating these measures to the performance accuracy of isometric force control. The basic experimental manipulation consisted of subjects controlling a grip dynamometer and the subsequent force trace displayed on a computer monitor at various magnitudes of force output and control-signal gain. Several findings from this study were of interest. First, the effects of control-signal gain and its interplay with the magnitude of force were most evident across the parietal and frontocentral electrode locations--areas specifically related to multi-modal sensory evaluation (parietal lobe) and higher-order movement control (supplementary and mesial premotor areas). Second, electroencephalography (EEG) measures in the time domain, i.e., slow-wave potentials, were sensitive to control-signal gain only during the ramp phase of force production (period of reaching the target force), not the static phase (period of maintaining the target force level). Third, EEG measures within the frequency domain (event-related desynchronization), unlike the slow-wave potential measures, were sensitive to control-signal gain during the static phase of force production--a sensitivity that was directly related to improvements in the accuracy of isometric force control. The findings of this investigation are described in relation to the existent literature on human visuomotor integration with special attention paid to the distinct spatial and temporal electrocortical patterns exhibited under varying degrees of visual feedback and magnitudes of force output during grasping.


Subject(s)
Biofeedback, Psychology/physiology , Electroencephalography , Isometric Contraction/physiology , Psychomotor Performance/physiology , Adult , Female , Frontal Lobe/physiology , Humans , Male , Parietal Lobe/physiology , Photic Stimulation
3.
Anal Chem ; 73(10): 2190-9, 2001 May 15.
Article in English | MEDLINE | ID: mdl-11393840

ABSTRACT

An isotope dilution cold vapor inductively coupled plasma mass spectrometry (ID-CV-ICPMS) method featuring gaseous introduction of mercury via tin chloride reduction has been developed and applied to the quantification and certification of mercury in various NIST standard reference materials: SRM 966 Toxic Metals in Bovine Blood (30 ng x mL(-1)); SRM 1641d Mercury in Water (1.6 microg x mL(-1)); and SRM 1946 Lake Superior Fish Tissue (436 ng x g(-1)). Complementary mercury data were generated for SRMs and NIST quality control standards using cold vapor atomic absorption spectroscopy (CVAAS). Certification results for the determination of mercury in SRM 1641d using two independent methods (ID-CV-ICPMS and CVAAS) showed a degree of agreement of 0.3% between the methods. Gaseous introduction of mercury into the ICPMS resulted in a single isotope sensitivity of 2 x 10(6) counts x s(-1)/ng x g(-1) for 201Hg and significantly reduced the memory and washout effects traditionally encountered in solution nebulization ICPMS. Figures of merit for isotope ratio accuracy and precision were evaluated at dwell times of 10, 20, 40, 80, and 160 ms using SRM 3133 Mercury Spectrometric Solution. The optimum dwell time of 80 ms yielded a measured 201Hg/202Hg isotope ratio within 0.13% of the theoretical natural value and a measurement precision of 0.34%, on the basis of three replicate injections of SRM 3133.


Subject(s)
Mass Spectrometry/standards , Mercury/standards , Animals , Isotopes , Liver/chemistry , Mercury/analysis , Reference Standards , Reproducibility of Results , Sensitivity and Specificity , Whales
4.
Clin Neurophysiol ; 112(1): 68-77, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11137663

ABSTRACT

OBJECTIVE: The present research was aimed to further address the general empirical question regarding the behavioral and neurophysiological indices and mechanisms that contribute to and/or compensate for muscle fatigue. In particular, we examined isometric force production, EMG, and EEG correlates of progressive muscle fatigue while subjects performed a grasping task. METHODS: Six neurologically healthy subjects were instructed to produce and maintain 70% of maximum voluntary contraction (MVC) for a total of 5 s in a sequence of 120 trials using a specially designed grip dynamometer. Three components of movement-related potentials (Bereitschaftspotential, BP, Motor potential, MP, and Movement-monitoring potential, MMP) were extracted from continuous EEG records and analyzed with reference to behavioral indicators of muscle fatigue. RESULTS: Experimental manipulations induced muscle fatigue that was demonstrated by decreases in both MVC values and mean force levels produced concomitant to increases in EMG root mean square (RMS) amplitude with respect to baseline levels, and EMG slope. EEG data revealed a significant increase in MP amplitude at precentral (Cz and FCz) and contralateral (C3) electrode sites, and increases in BP amplitude at precentral (Cz and FCz) electrode sites. CONCLUSIONS: The increases in EMG amplitude, EMG slope, and MP amplitudes suggest a possible link between the control signal originating in the motor cortex and activity level of the alpha-motoneuron pool as a function of progressive muscle fatigue. Overall, the data demonstrate that progressive muscle fatigue induced a systematic increase in the electrocortical activation over the supplementary motor and contralateral sensorimotor areas as reflected in the amplitude of movement-related EEG potentials.


Subject(s)
Hand Strength/physiology , Motor Cortex/physiology , Movement/physiology , Muscle Fatigue/physiology , Adolescent , Adult , Blood Pressure/physiology , Data Interpretation, Statistical , Electromyography , Evoked Potentials/physiology , Humans , Isometric Contraction/physiology
5.
Exp Brain Res ; 135(1): 106-16, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11104132

ABSTRACT

In a number of recent studies, the specific sensitivity of movement-related EEG potentials toward experimental manipulations of motor tasks using the index finger as a primary end-effector is well documented. The major question in this study was whether different movement-related EEG components are primarily end-effector or task dependent. Accordingly, the experimental task (i.e., the rate of force development - a ratio of peak force to time-to-peak force) was systematically manipulated and the effects of this manipulation on movement-related potentials were examined while subjects used either the index, middle, ring or little finger. Significant effects observed in this study were due mainly to the sensitivity of movement-related potentials preceding movement onset (Bereit shafts potential and motor potential) toward the specific finger performing the task and the sensitivity of components accompanying the task (movement-monitoring potential) toward the rate of force development. In addition, both movement-related potentials preceding and accompanying movement significantly changed as a function of the finger performing the slow task (lower rate of force development) with maximum values observed for the ring finger and minimal values observed for the index finger. Behaviorally subjects were less accurate during slow tasks regardless of the finger performing the task. In contrast, the amplitude of neither early nor late components of movement-related potentials changed as a function of the finger performing the fast task (higher rate of force development). Overall, our results are consistent with the notion that the whole complex of movement-related EEG potentials reflect a combination of factors including the selection of corresponding general motor programs as reflected in the amplitude of potentials preceding movement and specific elements of the task including rate of force development as reflected in the amplitude of potentials accompanying movement execution.


Subject(s)
Fingers/physiology , Isometric Contraction/physiology , Movement/physiology , Adult , Analysis of Variance , Electroencephalography , Female , Humans
6.
Clin Neurophysiol ; 111(11): 1997-2007, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11068235

ABSTRACT

OBJECTIVES: The present study was designed to obtain additional data regarding the differential influence of kinematic parameters and different nominal force levels upon components of movement-related cortical potentials (MRP) during index finger flexion. METHODS: The absolute nominal force level of discrete movements was varied while the rate of force development remained constant within a given task. This was accomplished by utilizing a pre-loading experimental design at different ranges of index finger motion (25, 50 and 75 degrees), so that the movement kinematic profiles (velocity and acceleration) and rate of force development remained constant within each given range of motion. Time-domain averaging of EEG single trials was applied in order to extract 3 movement-related potentials (BP(-600 to -500), BP(-100 to 0) and N(0 to 100)) preceding and accompanying 25, 50 and 75 degrees of unilateral finger movement with no pre-load (0 g), small pre-load (100 g) and large pre-load (200 g). RESULTS: The range of motion differentially influenced the amplitude of early (BP(-600 to -500)) and late (BP(-100 to 0)) MRP components spatially localized over frontal, central and parietal areas. The amplitude of the N(0 to 100) component localized over parietal and frontal areas was also sensitive toward experimental manipulations of the range of motion. Overall, the amplitude of N(0 to 100) localized over the central area was the only MRP component that was sensitive to the amount of pre-loading. However, within a given range of motion, none of the pre-loading conditions (0, 100 or 200 g) influenced the amplitude of MRP components. CONCLUSIONS: The central finding was that an increase in nominal force production within a given range of motion did not influence MRP components when the rate of force development was held constant. It becomes especially apparent with strict control of kinematic and kinetic movement parameters that different methods of adding weight to the index finger performing the same movement patterns have different consequences for EEG correlates as reflected in the amplitude and spatial distribution of MRP. The range of motion of index finger flexion was the primary kinematic variable that consistently influenced MRP components both preceding and accompanying movement execution.


Subject(s)
Brain/physiology , Evoked Potentials/physiology , Fingers/physiology , Range of Motion, Articular/physiology , Adult , Electroencephalography , Female , Humans , Male
7.
Motor Control ; 4(3): 350-72, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10900059

ABSTRACT

The question regarding the invariant movement properties the central nervous system may organize to accomplish different motor task demands as reflected in EEG remains unsolved. Surprisingly, no systematic electrocortical research in humans has related movement preparation with different movement distance, although this area has been widely investigated in the field of motor control. This study examined whether the amplitude of discrete wrist movements influences the various EEG components both in time and frequency domains. Time-domain averaging techniques and Morlet wavelet transforms of EEG single trials were applied in order to extract three components [BP(0), N1, and LPS] of movement related potentials (MRP) and to quantify changes in oscillatory activity of the movement-induced EEG waveforms accompanying 20, 40, and 60 unilateral wrist flexion movements. The experimental manipulations induced systematic changes in BP(0) and N1 amplitude along the midline (Fz, Cz, and Pz) with 20 movement showing the most negativity and 60 the least. The dominant energy within a 30-50 frequency cluster from bilateral precentral (C3, Cz, C4), frontal (F3, Fz, F4), and parietal (P3, Pz, P4) areas with maximum at vertex (Cz) also appeared to be sensitive to movement amplitude with the least power observed during 60 wrist flexion. This suggests that movement amplitude may be a controllable variable that is highly related with task-specific cortical activation primarily at frontocentral areas as reflected in EEG.


Subject(s)
Wrist/physiology , Adult , Biomechanical Phenomena , Electroencephalography , Evoked Potentials/physiology , Humans , Models, Biological , Movement/physiology , Muscle, Skeletal/physiology , Time Factors
8.
Exp Brain Res ; 132(2): 195-202, 2000 May.
Article in English | MEDLINE | ID: mdl-10853944

ABSTRACT

Movement-related cortical d.c. shifts accompanying the execution of four different prehensile tasks were investigated using six normal adult subjects. The goal was to identify patterns of brain electrical activity that differentiated a precision grip configuration (thumb and index finger or 2f) from a full precision grip configuration (thumb and all fingers or 5f) at different total force levels. As such, this was the first study to systematically manipulate both grip configuration and force level while also measuring movement-related potentials (MRP) during the control phase of an isometric prehensile task. This investigation focused on assessing the sustained, performance-related negativity (N-P) associated with the execution of particular grip configurations at different total force levels (percentage maximum voluntary force, MVF). The results from this study demonstrated significant interactions between grip configuration, force level and amplitude of the N-P. First, an overall increase in force output does not correspond to larger N-P amplitudes under these task conditions. Second, force level and grip configuration interact significantly in determining the peak N-P, especially in low-force conditions. Overall, the findings reveal a task-specific sensitivity of movement-related potentials associated with the control phase of a prehensile force task while humans execute different grip configurations and force levels.


Subject(s)
Evoked Potentials, Motor/physiology , Hand Strength/physiology , Adult , Cerebral Cortex/physiology , Electrodes , Electroencephalography , Female , Humans , Male , Psychomotor Performance/physiology
9.
Brain Res Cogn Brain Res ; 9(3): 287-98, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10808140

ABSTRACT

Using a video game format, this study examined the effects of time pressure (TP) on behavioral and electrocortical indices. The behavioral results were consistent with previous time pressure research in that TP reduced time to perform a task and increases behavioral errors. In addition, electroencephalogram (EEG) measures showed distinctive patterns associated with TP in the theta, mu, and gamma bands along the midline. Site specific changes in the success vs. failure trials were also seen in midline theta at Fz, gamma at Fz, and mu at Cz. Right parietal alpha also differentiated TP and success vs. failure trials. In specific TP (1) increased frontal midline theta activity and (2) increased gamma at midline (frontal, central, and partietal) and in right frontal areas. The results of these findings are discussed in terms of the formation of specific neurocognitive strategies as evidenced by the topographic distribution of task-related modulation of the EEG within certain frequency bands. It is suggested that the effect of TP on visuomotor performance is mediated by adopting either task-relevant or task-irrelevant neurocognitive strategies as evidenced by successful or failed trials, respectively. Whether these strategies are formulated prior to performance or appear spontaneously during task performance remains unclear and is awaiting further experimentation.


Subject(s)
Cerebral Cortex/physiology , Psychomotor Performance/physiology , Adult , Alpha Rhythm , Female , Humans , Male , Reaction Time/physiology , Theta Rhythm
10.
Brain Res Cogn Brain Res ; 9(2): 177-92, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10729701

ABSTRACT

Our principal finding from this study is that there were changes at the level of brain electrical activity (EEG) during cognitive tasks while subjects were instructed to visually recognize non-stable postures of a computer animated human body model. In particular, there was clear enhancement of the amplitude within the gamma band (30-50 Hz) activity associated with visual recognition of non-stable postures at fronto-central and parietal areas in all subjects. The Morlet's wavelet transform was applied to examine the change of time-frequency (TF) energy within a range of 1-70 Hz frequencies range as a function of experimental tasks. There was a high energy burst within the 35-45 Hz TF cluster at fronto-central and parietal areas when subjects visually recognized non-stable postures. Experimental evidences were provided demonstrating that EEG activity recorded during visual recognition of non-stable postures was related to specific judgement of postural instability. In a series of control experiments, additional evidences were provided to justify the specific sensitivity of EEG 40-Hz activity to the act of visual recognition of postural instability. The contamination of muscle activity in the reported EEG results during perceptual tasks was also ruled out. Our findings are consistent with the notion of existence of specialized neural detectors (predictors) for specific postures and goal-oriented behavior. However, the functional significance and precise cognitive and neurophysiological mechanisms predicting the existence of these detectors remain to be explored.


Subject(s)
Electroencephalography/methods , Memory/physiology , Periodicity , Posture , Space Perception/physiology , Adolescent , Adult , Ankle Joint , Computer Graphics , Female , Frontal Lobe/physiology , Humans , Male , Parietal Lobe/physiology , Photic Stimulation , User-Computer Interface , Visual Cortex/physiology
11.
Fresenius J Anal Chem ; 368(4): 362-70, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11227505

ABSTRACT

Lead (Pb) and cadmium (Cd) have been determined in six new environmental standard reference materials (SRMs) using isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS). The SRMs are the following: SRM 1944, New York-New Jersey Waterway Sediment, SRMs 2583 and 2584, Trace Elements in Indoor Dust, Nominal 90 mg/kg and 10,000 mg/kg Lead, respectively, SRMs 2586 and 2587, Trace Elements in Soil Containing Lead from Paint, Nominal 500 mg/kg and 3,000 mg/kg Lead, respectively, and SRM 2782, Industrial Sludge. The capabilities of ID ICP-MS for the certification of Pb and Cd in these materials are assessed. Sample preparation and ratio measurement uncertainties have been evaluated. Reproducibility and accuracy of the established procedures are demonstrated by determination of gravimetrically prepared primary standard solutions and by comparison with isotope dilution thermal ionization mass spectrometry (ID TIMS). Material heterogeneity was readily demonstrated to be the dominant source of uncertainty in the certified values.


Subject(s)
Cadmium/standards , Environmental Pollutants/analysis , Lead/standards , Mass Spectrometry/methods , Cadmium/analysis , Calibration , Environmental Pollutants/standards , Lead/analysis , Mass Spectrometry/standards , Quality Control , Reference Standards , Reproducibility of Results
12.
Clin Neurophysiol ; 110(10): 1764-73, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10574291

ABSTRACT

OBJECTIVE: The present study was aimed to further address the general empirical question regarding the sensitivity of EEG correlates toward specific kinematic and/or kinetic movement parameters. In particular, we examined whether adding different inertial loads to the index finger, while a subject produced various amplitudes of discrete finger movements, influenced the movement-related potentials (MRP). METHODS: Our experimental design systematically controlled the angular displacement, velocity and acceleration (kinematic) profiles of finger movement while torque (kinetics) was varied by adding different external loads opposing finger flexion movement. We applied time-domain averaging of EEG single trials in order to extract three movement-related potentials (BP-600 to -500 BP-100 to 0 and N0 to 100) preceding and accompanying 25, 50 and 75 degrees unilateral finger movements with no inertial load, small (100 g) and large (200 g) loading. RESULTS: It was shown that both inertial load and the degree of angular displacement of index finger flexion increased the amplitude of late components of MRP (BP-100 to 0 and N0 to 100) over frontal and precentral areas. In contrast, the external load and movement amplitude manipulations did not influence the earlier component of the MRP (BP- 600 to -500). CONCLUSIONS: Overall, the data demonstrate that adding inertial load to the finger with larger angular displacements involves systematic increase in activation across frontal and precentral areas that are related to movement initiation as reflected in BP-100 to 0 and N0 to 100.


Subject(s)
Electroencephalography , Evoked Potentials, Motor/physiology , Finger Joint/physiology , Movement/physiology , Adult , Analysis of Variance , Biomechanical Phenomena , Humans , Kinetics , Signal Processing, Computer-Assisted , Time Factors , Torque , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...