Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res Lett ; 19(5): 054022, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38855580

ABSTRACT

South Africa (SA) is highly vulnerable to the effects of drought on the environment, economy, and society. However, its effect on human health remains unclear. Understanding the mortality risk associated with different types of droughts in different population groups and by specific causes would help clarify the potential mechanisms involved. The study aims to comprehensively assess the effect of droughts of varying time scales on cause-specific mortality (all; infectious and parasitic; endocrine, nutritional, and metabolic; cardiovascular; respiratory) in SA (from 2009-2016) and identify more vulnerable profiles based on sex and age. We also evaluated the urbanicity and district-level socioeconomic deprivation as potential risk modifiers. We used a two-stage time-series study design, with the weekly standardized precipitation-evapotranspiration index (SPEI) calculated at 1, 6, 12, and 15 months of accumulation to identify droughts of different duration (SPEI1, 6, 12, 15, respectively). We applied a quasi-Poisson regression adjusted by mean temperature to assess the association between each type of drought and weekly mortality in all district municipalities of SA, and then pooled the estimates in a meta-regression model. We reported relative risks (RRs) for one unit increase of drought severity. Overall, we found a positive association between droughts (regardless the time scale) and all causes of death analyzed. The strongest associations were found for the drought events more prolonged (RR [95%CI]: 1.027 [1.018, 1.036] (SPEI1); 1.035 [1.021, 1.050] (SPEI6); 1.033 [1.008, 1.058] (SPEI12); 1.098 [1.068, 1.129] (SPEI15)) and respiratory mortality (RRs varied from 1.037 [1.021, 1.053] (SPEI1) to 1.189 [1.14, 1.241] (SPEI15)). An indication of greater vulnerability was found in younger adults for the shortest droughts, in older adults for medium-term and long-term droughts, and children for very long-term droughts. However, differences were not significant. Further evidence of the relevance of urbanicity and demographic and socioeconomic conditions as potential risk modifiers is needed.

2.
Ann N Y Acad Sci ; 1436(1): 217-230, 2019 01.
Article in English | MEDLINE | ID: mdl-30295926

ABSTRACT

A Lagrangian analysis is applied to identify the main moisture source areas associated with atmospheric rivers (ARs) making landfall along the west coast of South Africa during the extended austral winter months from 1980 to 2014. The results show that areas that provide the anomalous uptake of moisture can be categorized into four regions: (1) the South Atlantic Ocean between 10°S and 30°S, (2) a clear local maximum in the eastern South Atlantic, (3) a continental source of anomalous uptake to the north of the Western Cape, and (4) over South America at a distance of more than 7000 km from the target region. It emerges that the South American moisture source can be linked to a particular phase of the South American low-level jet, known as a no Chaco jet event (NCJE), which transports moisture to the western and central South Atlantic basin. Concisely, we provide strong evidence that the two margins of the South Atlantic Ocean appear connected by two meteorological structures, with the NCJE playing a key role of transporting moisture from South America to the western and central South Atlantic basin, feeding the AR that transports some of the moisture to the west coast of South Africa.


Subject(s)
Models, Theoretical , Seasons , Temperature , Africa, Southern , Atlantic Ocean , South America
3.
Sci Rep ; 5: 18153, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26686943

ABSTRACT

Processes that control the hydrological balance in eastern South Africa on orbital to millennial timescales remain poorly understood because proxy records documenting its variability at high resolution are scarce. In this work, we present a detailed 270,000 year-long record of terrestrial climate variability in the KwaZulu-Natal province based on elemental ratios of Fe/K from the southwest Indian Ocean, derived from X-ray fluorescence core scanning. Eastern South African climate variability on these time scales reflects both the long-term effect of regional insolation changes driven by orbital precession and the effects associated with high-latitude abrupt climate forcing over the past two glacial-interglacial cycles, including millennial-scale events not previously identified. Rapid changes towards more humid conditions in eastern South Africa as the Northern Hemisphere entered phases of extreme cooling were potentially driven by a combination of warming in the Agulhas Current and shifts of the subtropical anticyclones. These climate oscillations appear coherent with other Southern Hemisphere records but are anti-phased with respect to the East Asian Monsoon. Numerical modelling results reveal that higher precipitation in the KwaZulu-Natal province during precession maxima is driven by a combination of increased local evaporation and elevated moisture transport into eastern South Africa from the coast of Mozambique.

4.
Sensors (Basel) ; 12(10): 13583-97, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-23202011

ABSTRACT

Wherever measurements have been made bromoform was found to be ubiquitous in the surface ocean in pmolar-nmolar concentrations. These measurements show concentrations in coastal regions orders of magnitude higher than in the pelagic oceans. Its atmospheric presence is primarily due to its release from algae and rapid transport to the marine boundary troposphere where it is known to participate in ozone chemistry via photochemical and catalytic pathways. Until quite recently, a limited number of studies existed (compared to other marine volatile organic compounds (VOCs)), mainly due to the analytical challenge(s) presented by the low environmental mixing ratios. In this work we detail the development of a simplified, cost effective method to detect and quantify bromoform in environmental air samples. Air samples (1.5 L) were preconcentrated onto a precooled adsorbent (Carbopack X/Carboxen 1016) trap. These samples were injected by means of rapid thermal desorption for separation and detection by GC-ECD. The system was calibrated by means of a custom-built permeation oven. A linear system response was achieved, having a detection limit of 0.73 ± 0.09 ppt. A range of environmental samples was analysed to demonstrate the ability of the technique to separate and identify bromoform from air samples. The results showed that bromoform concentrations typically averaged 24.7 ± 17.3 ppt in marine air samples, 68.5 ± 26.3 ppt in Cape Town urban air samples and 33.9 ± 40.5 ppt in simulated biomass burning plumes (SBBP).


Subject(s)
Carcinogens, Environmental/analysis , Environmental Monitoring/economics , Environmental Monitoring/methods , Air/analysis , Air Pollutants/analysis , Atmosphere/chemistry , Calibration , Cost-Benefit Analysis , Environmental Monitoring/instrumentation , Gas Chromatography-Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry/standards , Oceans and Seas , Sensitivity and Specificity , South Africa , Trihalomethanes/analysis , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...