Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1399451, 2024.
Article in English | MEDLINE | ID: mdl-38895121

ABSTRACT

Introduction: Anti-SSA antibodies target two unrelated proteins, Ro52 (E3 ligase) and Ro60 (RNA binding protein). Previous studies indicate that anti-Ro52 antibodies are frequently associated with various myositis-specific autoantibodies (MSAs)-including anti-tRNA synthetase antibodies-and that the coexistence of MSAs and anti-Ro52 antibodies may portend worse clinical outcomes. Although not well-described in the setting of myositis, work from our animal model of HRS (histidyl-tRNA synthetase)-induced myositis suggests that anti-Ro60 antibodies may also be linked to specific MSAs such as anti-HRS/Jo-1. We therefore aimed to demonstrate the prevalence and clinical characteristics of Ro52 and Ro60 antibody positivity in patients possessing Jo-1 antibodies. Methods: To establish the immunological link between anti-synthetase, anti-Ro52, and anti-Ro60 antibodies, we evaluated the relative titers of these antibodies in blood and bronchoalveolar lavage fluid (BALF) of mice following immunization with HRS/Jo-1. In parallel, we used ELISA-based approaches to assess sera from 177 anti-Jo1 antibody-positive patients for the presence of anti-Ro52 and/or anti-Ro60 antibodies. We then determined statistical associations between co-existing anti-Jo-1, anti-Ro52, and/or anti-Ro60 antibodies and clinical manifestations associated with the anti-synthetase syndrome. Results: Mice immunized with HRS had higher levels of anti-Ro52 and anti-Ro60 antibodies in serum and BALF than PBS-immunized mice. In 177 anti-Jo-1 antibody-positive patients, the prevalence of anti-Ro52 and anti-Ro60 antibodies was 36% and 15%, respectively. The frequency of dry eye/dry mouth, interstitial pneumonia, and pulmonary events over time differed between patients with various combinations of anti-Ro52 and anti-Ro60 antibodies. While anti-Ro52 antibodies generally correlated with statistically significant increases in each of these clinical manifestations, the presence of Ro60 antibodies alone was associated with decreased frequency of ILD. Discussion: Anti-Ro52 and/or anti-Ro60 antibodies are often co-expressed with anti-Jo1 antibodies, defining clinical subsets with different disease course/outcomes.


Subject(s)
Myositis , Ribonucleoproteins , Animals , Humans , Ribonucleoproteins/immunology , Myositis/immunology , Female , Mice , Male , Middle Aged , Antibodies, Antinuclear/immunology , Antibodies, Antinuclear/blood , Autoantibodies/blood , Autoantibodies/immunology , Aged , Adult , Histidine-tRNA Ligase/immunology , Disease Models, Animal , Autoantigens/immunology , RNA, Small Cytoplasmic
2.
Front Immunol ; 14: 1238221, 2023.
Article in English | MEDLINE | ID: mdl-37809058

ABSTRACT

Introduction: Previous work in humans has demonstrated that both innate and adaptive immune signaling pathways contribute to the pathogenesis of idiopathic inflammatory myopathy (IIM), a systemic autoimmune disease targeting muscle as well as extra-muscular organs. To better define interactive signaling networks in IIM, we characterized the cellular phenotype and transcriptomic profiles of muscle-infiltrating cells in our established murine model of histidyl-tRNA synthetase (HRS)-induced myositis. Methods: Myositis was induced in wild type (WT) and various congenic/mutant strains of C57BL/6 mice through intramuscular immunization with recombinant HRS. Histopathological, immunohistochemical, flow cytometric, and transcriptomic assessments were used to characterize the functional relationship between muscle-infiltrating cell populations in these strains lacking different components of innate and/or adaptive immune signaling. Results: RAG1 KO mice developed markedly reduced muscle inflammation relative to WT mice, demonstrating a key requirement for T cells in driving HRS-induced myositis. While the reduction of mononuclear cell infiltrates in CD4-Cre.MyD88fl/fl conditional knockout mice and OT-II TCR transgenic mice highlighted roles for both innate and TCR-mediated/adaptive immune signaling in T cells, diminished inflammation in Lyz2-Cre.MyD88fl/fl conditional knockout mice underscored the importance of macrophage/myeloid cell populations in supporting T cell infiltration. Single cell RNA sequencing-based clustering of muscle-infiltrating subpopulations and associated pathway analyses showed that perturbations of T cell signaling/function alter the distribution and phenotype of macrophages, fibroblasts, and other non-lymphoid cell populations contributing to HRS-induced myositis. Discussion: Overall, HRS-induced myositis reflects the complex interplay between multiple cell types that collectively drive a TH1-predominant, pro-inflammatory tissue phenotype requiring antigen-mediated activation of both MyD88- and TCR-dependent T cell signaling pathways.


Subject(s)
Histidine-tRNA Ligase , Myositis , Humans , Mice , Animals , T-Lymphocytes , Mice, Inbred C57BL , Adaptive Immunity , Macrophages , Inflammation , Mice, Knockout , Receptors, Antigen, T-Cell
3.
Neuroscience ; 475: 127-136, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34508847

ABSTRACT

Ubiquitin carboxy terminal hydrolase L1 (UCHL1) is a protein highly expressed in neurons that may play important roles in the ubiquitin proteasome pathway (UPP) in neurons, axonal integrity, and motor function after traumatic brain injury (TBI). Binding of reactive lipid species to cysteine 152 of UCHL1 results in unfolding, aggregation, and inactivation of the enzyme. To test the role of this mechanism in TBI, mice bearing a cysteine to alanine mutation at site 152 (C152A mice) that renders UCHL1 resistant to inactivation by reactive lipids were subjected to the controlled cortical impact model (CCI) of TBI and compared to wild type (WT) controls. Alterations in protein ubiquitination and activation of autophagy pathway markers in traumatized brain were detected by immunoblotting. Cell death and axonal injury were determined by histological assessment and anti-amyloid precursor protein (APP) immunohistochemistry. Behavioral outcomes were determined using the beam balance and Morris water maze tests. C152A mice had reduced accumulation of ubiquitinated proteins, decreased activation of the autophagy markers Beclin-1 and LC3B, a decreased number of abnormal axons, decreased CA1 cell death, and improved motor and cognitive function compared to WT controls after CCI; no significant change in spared tissue volume was observed. These results suggest that binding of lipid substrates to cysteine 152 of UCHL1 is important in the pathogenesis of injury and recovery after TBI and may be a novel target for future therapeutic approaches.


Subject(s)
Brain Injuries, Traumatic , Ubiquitin Thiolesterase , Animals , Axons/metabolism , Binding Sites , Cell Death , Lipids , Mice , Mutation/genetics , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
4.
Exp Neurol ; 336: 113524, 2021 02.
Article in English | MEDLINE | ID: mdl-33159930

ABSTRACT

Ubiquitin (Ub) C-terminal hydrolase L1 (UCHL1) is a multifunctional protein that is expressed in neurons throughout brain at high levels. UCHL1 deletion is associated with axonal degeneration, progressive sensory motor ataxia, and premature death in mice. UCHL1 has been hypothesized to play a role in the pathogenesis of neurodegenerative diseases and recovery after neuronal injury. UCHL1 hydrolyzes Ub from polyubiquitinated (poly-Ub) proteins, but also may ligate Ub to select neuronal proteins, and interact with cytoskeletal proteins. These and other mechanisms have been hypothesized to underlie UCHL1's role in neurodegeneration and response to brain injury. A UCHL1 knockin mouse containing a C90A mutation (C90A) devoid of hydrolase activity was constructed. The C90A mouse did not develop the sensory and motor deficits, degeneration of the gracile nucleus and tract, or premature death as seen in UCHL1 deficient mice. C90A and wild type (WT) mice were subjected to the controlled cortical impact (CCI) model of traumatic brain injury (TBI), and cell death, axonal injury and behavioral outcome were assessed. C90A mice exhibited decreased spared tissue volume, greater loss of CA1 hippocampal neurons and greater axonal injury as detected using anti-amyloid precursor protein (APP) antibody and anti- non-phosphorylated neurofilament H (SMI-32) antibody immunohistochemistry after CCI compared to WT controls. Poly-Ub proteins and Beclin-1 were elevated after CCI in C90A mice compared to WT controls. Vestibular motor deficits assessed using the beam balance test resolved by day 5 after CCI in WT mice but not in C90A mice. These results suggest that the hydrolase activity of UCHL1 does not account for the progressive neurodegeneration and premature death seen in mice that do not express full length UCHL1. The hydrolase activity of UCHL1 contributes to the function of the ubiquitin proteasome pathway (UPP), ameliorates activation of autophagy, and improves motor recovery after CCI. Thus, UCHL1 hydrolase activity plays an important role in acute injury response after TBI.


Subject(s)
Axons/pathology , Brain Injuries, Traumatic/pathology , Cell Death/drug effects , Neurons/pathology , Ubiquitin Thiolesterase/genetics , Amyloid beta-Protein Precursor/antagonists & inhibitors , Animals , Autophagy , Beclin-1/metabolism , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/psychology , CA1 Region, Hippocampal/pathology , Cell Death/genetics , Gene Knock-In Techniques , Mice , Mutation/genetics , Psychomotor Performance , Signal Transduction/genetics , Ubiquitination
5.
Proc Natl Acad Sci U S A ; 116(10): 4643-4650, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30760601

ABSTRACT

Ubiquitin C-terminal hydrolase L1 (UCHL1) is a unique brain-specific deubiquitinating enzyme. Mutations in and aberrant function of UCHL1 have been linked to many neurological disorders. UCHL1 activity protects neurons from hypoxic injury, and binding of stroke-induced reactive lipid species to the cysteine 152 (C152) of UCHL1 unfolds the protein and disrupts its function. To investigate the role of UCHL1 and its adduction by reactive lipids in inhibiting repair and recovery of function following ischemic injury, a knock-in (KI) mouse expressing the UCHL1 C152A mutation was generated. Neurons derived from KI mice had less cell death and neurite injury after hypoxia. UCHL1 C152A KI and WT mice underwent middle cerebral artery occlusion (MCAO) or sham surgery. White matter injury was significantly decreased in KI compared with WT mice 7 d after MCAO. Histological analysis revealed decreased tissue loss at 21 d after injury in KI mice. There was also significantly improved sensorimotor recovery in postischemic KI mice. K63- and K48-linked polyubiquitinated proteins were increased in penumbra of WT mouse brains but not in KI mouse brains at 24 h post MCAO. The UCHL1 C152A mutation preserved excitatory synaptic drive to pyramidal neurons and their excitability in the periinfarct zone; axonal conduction velocity recovered by 21 d post MCAO in KI mice in corpus callosum. These results demonstrate that UCHL1 activity is an important determinant of function after ischemia and further demonstrate that the C152 site of UCHL1 plays a significant role in functional recovery after stroke.


Subject(s)
Axons/enzymology , Brain Ischemia/enzymology , Brain Ischemia/physiopathology , Ubiquitin Thiolesterase/metabolism , Animals , Brain Ischemia/genetics , Cell Death , Disease Models, Animal , Humans , Male , Mice , Mutation , Neurons/cytology , Neurons/enzymology , Recovery of Function , Ubiquitin Thiolesterase/genetics
6.
PLoS Biol ; 16(6): e2004663, 2018 06.
Article in English | MEDLINE | ID: mdl-29889904

ABSTRACT

Nuclear factor κB (NF-κB) is a transcription factor important for regulating innate and adaptive immunity, cellular proliferation, apoptosis, and senescence. Dysregulation of NF-κB and its upstream regulator IκB kinase (IKK) contributes to the pathogenesis of multiple inflammatory and degenerative diseases as well as cancer. An 11-amino acid peptide containing the NF-κB essential modulator (NEMO)-binding domain (NBD) derived from the C-terminus of ß subunit of IKK, functions as a highly selective inhibitor of the IKK complex by disrupting the association of IKKß and the IKKγ subunit NEMO. A structure-based pharmacophore model was developed to identify NBD mimetics by in silico screening. Two optimized lead NBD mimetics, SR12343 and SR12460, inhibited tumor necrosis factor α (TNF-α)- and lipopolysaccharide (LPS)-induced NF-κB activation by blocking the interaction between IKKß and NEMO and suppressed LPS-induced acute pulmonary inflammation in mice. Chronic treatment of a mouse model of Duchenne muscular dystrophy (DMD) with SR12343 and SR12460 attenuated inflammatory infiltration, necrosis and muscle degeneration, demonstrating that these small-molecule NBD mimetics are potential therapeutics for inflammatory and degenerative diseases.


Subject(s)
Biomimetic Materials/pharmacology , I-kappa B Kinase/antagonists & inhibitors , Muscular Dystrophy, Duchenne/drug therapy , Pneumonia/drug therapy , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Biomimetic Materials/chemistry , Cell Line , Female , HEK293 Cells , Humans , I-kappa B Kinase/chemistry , I-kappa B Kinase/metabolism , Inflammation/drug therapy , Lipopolysaccharides , Mice , Mice, Inbred C57BL , Necrosis/drug therapy , Protein Domains , RAW 264.7 Cells
7.
Mol Med ; 21: 442-52, 2015 May 22.
Article in English | MEDLINE | ID: mdl-26018805

ABSTRACT

In Duchenne muscular dystrophy (DMD) patients and the mdx mouse model of DMD, chronic activation of the classical nuclear factor-κB (NF-κB) pathway contributes to the pathogenesis that causes degeneration of muscle fibers, inflammation and fibrosis. Prior studies demonstrate that inhibition of inhibitor of κB kinase (IKK)-mediated NF-κB activation using L-isomer NF-κB essential modulator (NEMO)-binding domain (NBD) peptide-based approaches reduce muscle pathology in the mdx mouse. For our studies, the NBD peptide is synthesized as a fusion peptide with an eight-lysine (8K) protein transduction domain to facilitate intracellular delivery. We hypothesized that the d-isoform peptide could have a greater effect than the naturally occurring L-isoform peptide due to the longer persistence of the D-isoform peptide in vivo. In this study, we compared systemic treatment with low (1 mg/kg) and high (10 mg/kg) doses of L- and D-isomer 8K-wild-type-NBD peptide in mdx mice. Treatment with both L- or D-isoform 8K-wild-type-NBD peptide resulted in decreased activation of NF-κB and improved histology in skeletal muscle of the mdx mouse. However, we observed kidney toxicity (characterized by proteinuria), increased serum creatinine, activation of NF-κB and pathological changes in kidney cortex that were most severe with treatment with the D-isoform of 8K-wild-type-NBD peptide. The observed toxicity was also seen in normal mice.


Subject(s)
Amino Acid Substitution/genetics , Muscular Dystrophy, Duchenne/drug therapy , NF-kappa B/genetics , Peptides/administration & dosage , Animals , Disease Models, Animal , Humans , I-kappa B Kinase/antagonists & inhibitors , I-kappa B Kinase/genetics , Kidney/drug effects , Kidney/pathology , Male , Mice , Mice, Inbred mdx , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , NF-kappa B/antagonists & inhibitors , Peptides/genetics , Signal Transduction/drug effects , Stereoisomerism
8.
J Clin Invest ; 122(7): 2601-12, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22706308

ABSTRACT

The accumulation of cellular damage, including DNA damage, is thought to contribute to aging-related degenerative changes, but how damage drives aging is unknown. XFE progeroid syndrome is a disease of accelerated aging caused by a defect in DNA repair. NF-κB, a transcription factor activated by cellular damage and stress, has increased activity with aging and aging-related chronic diseases. To determine whether NF-κB drives aging in response to the accumulation of spontaneous, endogenous DNA damage, we measured the activation of NF-κB in WT and progeroid model mice. As both WT and progeroid mice aged, NF-κB was activated stochastically in a variety of cell types. Genetic depletion of one allele of the p65 subunit of NF-κB or treatment with a pharmacological inhibitor of the NF-κB-activating kinase, IKK, delayed the age-related symptoms and pathologies of progeroid mice. Additionally, inhibition of NF-κB reduced oxidative DNA damage and stress and delayed cellular senescence. These results indicate that the mechanism by which DNA damage drives aging is due in part to NF-κB activation. IKK/NF-κB inhibitors are sufficient to attenuate this damage and could provide clinical benefit for degenerative changes associated with accelerated aging disorders and normal aging.


Subject(s)
Aging/drug effects , Cellular Senescence , DNA Damage , I-kappa B Kinase/antagonists & inhibitors , Transcription Factor RelA/metabolism , Aging/genetics , Animals , Cell Nucleus/metabolism , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endonucleases/genetics , Endonucleases/metabolism , Gene Expression Regulation/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/physiology , I-kappa B Kinase/metabolism , Mice , Mice, Transgenic , Oxidative Stress , Peptides/pharmacology , Phosphorylation , Progeria/drug therapy , Progeria/pathology , Protein Binding , Signal Transduction , Transcription Factor RelA/genetics , Transcriptional Activation
9.
Mol Med ; 18: 466-76, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22231732

ABSTRACT

Gene therapy studies for Duchenne muscular dystrophy (DMD) have focused on viral vector-mediated gene transfer to provide therapeutic protein expression or treatment with drugs to limit dystrophic changes in muscle. The pathological activation of the nuclear factor (NF)-κB signaling pathway has emerged as an important cause of dystrophic muscle changes in muscular dystrophy. Furthermore, activation of NF-κB may inhibit gene transfer by promoting inflammation in response to the transgene or vector. Therefore, we hypothesized that inhibition of pathological NF-κB activation in muscle would complement the therapeutic benefits of dystrophin gene transfer in the mdx mouse model of DMD. Systemic gene transfer using serotype 9 adeno-associated viral (AAV9) vectors is promising for treatment of preclinical models of DMD because of vector tropism to cardiac and skeletal muscle. In quadriceps of C57BL/10ScSn-Dmd(mdx)/J (mdx) mice, the addition of octalysine (8K)-NF-κB essential modulator (NEMO)-binding domain (8K-NBD) peptide treatment to AAV9 minidystrophin gene delivery resulted in increased levels of recombinant dystrophin expression suggesting that 8K-NBD treatment promoted an environment in muscle tissue conducive to higher levels of expression. Indices of necrosis and regeneration were diminished with AAV9 gene delivery alone and to a greater degree with the addition of 8K-NBD treatment. In diaphragm muscle, high-level transgene expression was achieved with AAV9 minidystoophin gene delivery alone; therefore, improvements in histological and physiological indices were comparable in the two treatment groups. The data support benefit from 8K-NBD treatment to complement gene transfer therapy for DMD in muscle tissue that receives incomplete levels of transduction by gene transfer, which may be highly significant for clinical applications of muscle gene delivery.


Subject(s)
Diaphragm/physiology , Dystrophin/genetics , Muscle, Skeletal/physiology , NF-kappa B/metabolism , Peptides/pharmacology , Animals , Dependovirus , Dystrophin/metabolism , Genetic Vectors , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscular Dystrophy, Duchenne
10.
Neurobiol Dis ; 43(3): 598-608, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21624467

ABSTRACT

The activation of nuclear factor κB (NF-κB) contributes to muscle degeneration that results from dystrophin deficiency in human Duchenne muscular dystrophy (DMD) and in the mdx mouse. In dystrophic muscle, NF-κB participates in inflammation and failure of muscle regeneration. Peptides containing the NF-κB Essential Modulator (NEMO) binding domain (NBD) disrupt the IκB kinase complex, thus blocking NF-κB activation. The NBD peptide, which is linked to a protein transduction domain to achieve in vivo peptide delivery to muscle tissue, was systemically delivered to mdx mice for 4 or 7 weeks to study NF-κB activation, histological changes in hind limb and diaphragm muscle and ex vivo function of diaphragm muscle. Decreased NF-κB activation, decreased necrosis and increased regeneration were observed in hind limb and diaphragm muscle in mdx mice treated systemically with NBD peptide, as compared to control mdx mice. NBD peptide treatment resulted in improved generation of specific force and greater resistance to lengthening activations in diaphragm muscle ex vivo. Together these data support the potential of NBD peptides for the treatment of DMD by modulating dystrophic pathways in muscle that are downstream of dystrophin deficiency.


Subject(s)
I-kappa B Kinase/administration & dosage , I-kappa B Kinase/pharmacokinetics , Intracellular Signaling Peptides and Proteins/administration & dosage , Intracellular Signaling Peptides and Proteins/pharmacokinetics , Muscle, Skeletal/physiology , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/metabolism , Peptides/therapeutic use , Animals , Diaphragm/pathology , Diaphragm/physiology , Disease Models, Animal , Dystrophin/deficiency , Dystrophin/genetics , I-kappa B Kinase/therapeutic use , Intracellular Signaling Peptides and Proteins/therapeutic use , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle, Skeletal/innervation , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , NF-kappa B/antagonists & inhibitors , NF-kappa B/physiology , Necrosis/prevention & control , Nerve Regeneration/drug effects , Nerve Regeneration/genetics , Nerve Regeneration/physiology , Peptides/administration & dosage , Peptides/pharmacokinetics , Protein Structure, Tertiary/genetics
12.
Hum Gene Ther ; 16(6): 678-84, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15960599

ABSTRACT

Adenoviral-associated viral vectors (AAV) have shown significant promise for efficient gene delivery to multiple tissues. Studies of different serotypes of AAV revealed different expression patterns provided by gene delivery in postnatal mice. Previous in utero gene delivery studies of AAV serotype 2 (AAV2) demonstrated efficient gene expression in certain fetal tissues depending on route of administration. We studied the pattern of gene expression from AAV serotype 1 (AAV1) using intramuscular, intraperitoneal, and intravascular routes of administration in embryonic day 16 C57BL/6 mice. Limb skeletal muscle transduction was only achieved with AAV1 by intramuscular administration. The levels of gene expression were 20-fold higher than a comparable administration of AAV2. Diaphragm muscle transduction by AAV1 was achieved at the highest level by intraperitoneal administration, and to a lesser degree by intravascular administration. All delivery routes resulted in transgene expression in the lung. Our results indicate that AAV1 can offer higher transgene expression in fetal skeletal muscle than AAV2 with intramuscular administration. The transgene expression pattern in different tissues, which depends on vector serotype and route of administration, will need to be considered in planning therapeutic studies for specific disorders.


Subject(s)
Dependovirus/genetics , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Muscle, Skeletal/embryology , Animals , Female , Gene Expression , Genetic Vectors/genetics , Injections, Intramuscular , Injections, Intraperitoneal , Mice , Mice, Inbred C57BL , Muscle, Skeletal/physiology , Pregnancy , Tissue Distribution , Transgenes , beta-Galactosidase/genetics , beta-Galactosidase/pharmacokinetics
13.
J Biomed Mater Res A ; 69(1): 91-6, 2004 Apr 01.
Article in English | MEDLINE | ID: mdl-14999755

ABSTRACT

Adenoviral (Ad) vectors feature attractive characteristics for gene therapy of a wide variety of diseases. In many cases, the Ad vector must be administered using catheters and other plastic medical devices. Although poly(vinyl chloride) is one of the most frequently used catheter materials, it is relatively rigid and requires the addition of a plasticizer such as di-2-ethylhexyl phthalate (DEHP) to increase its flexibility. In this study, we demonstrated that exposure to a DEHP-containing catheter decreased the infectivity of Ad vectors but not the total particle number of the vector. Loss of Ad vector infectivity was directly related to the time of exposure to the DEHP-containing catheter, but it was not due to simple leaching of the chemical from the plastic. The loss of Ad vector infectivity could be prevented by preflushing the tube with albumin. Careful consideration of the compatibility between gene therapy vectors and medical delivery devices will be critical to the success of human gene therapy applications.


Subject(s)
Adenoviridae , Biocompatible Materials , Diethylhexyl Phthalate , Genetic Therapy/instrumentation , Genetic Vectors , Polyvinyl Chloride , Catheterization , Cell Line , Genetic Therapy/methods , Genetic Vectors/chemistry , Humans , Materials Testing , Serum Albumin
14.
Hum Gene Ther ; 14(7): 645-9, 2003 May 01.
Article in English | MEDLINE | ID: mdl-12804146

ABSTRACT

Adenoviral (Ad) infection involves attachment mediated by the Ad fiber protein binding to the coxsackievirus-adenovirus receptor (CAR) of a target cell and internalization facilitated by the interaction of the Ad penton base protein with alpha(v) integrins. To understand the relative importance of the Ad binding and internalization steps for the transduction of fetal skeletal muscle, we used a panel of genetically modified vectors that specifically ablate the fiber-CAR interaction (AdL.F*), the penton base-alpha(v) integrin interaction (AdL.PB*), or both (AdL.PB*F*) to transduce embryonic day 16 (E-16) mouse muscle in vivo and primary E-16 muscle cells in vitro. Quantification of transgene expression and vector genome copies revealed a striking absence of E-16 muscle transduction by AdL.F* and AdL.PB*F*. In contrast, fetal muscle transduction with AdL.PB* was not significantly different than with the unmodified vector. Similar results were observed with in vitro Ad infection studies in primary E-16 muscle cells. From these data we conclude that the fiber-CAR interaction is important for the transduction of fetal muscle by Ad vectors. The high dependence on fiber-CAR binding will impact the development of strategies for Ad vector retargeting to achieve muscle-specific transduction in utero.


Subject(s)
Adenoviridae/genetics , Capsid Proteins/metabolism , Muscle, Skeletal/embryology , Myoblasts, Skeletal/metabolism , Receptors, Virus/metabolism , Transduction, Genetic , Animals , Binding Sites , Capsid/metabolism , Cell Line , Cells, Cultured , Coxsackie and Adenovirus Receptor-Like Membrane Protein , Defective Viruses/genetics , Female , Fetus , Genetic Vectors , Mice , Mice, Inbred C57BL , Mutation , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...