Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 61(4): 969-977, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35201071

ABSTRACT

Spatial light modulators are widely used to perform modulations of different properties of the electromagnetic field. In this work, a simple optimization method for general double-pass setups was developed. It takes into account the involved polarizing elements and displays, and a numerical simulation based on an exhaustive search routine finds the optimal optical axis orientations of the polarizing elements for the desired modulation. By simultaneously considering both impingements, we are able to take full advantage of the modulation capabilities of the chosen spatial light modulators. In particular, different polarization modulations and complex amplitude modulations were studied for twisted nematic liquid crystal displays and passive linear optical elements. Examples of different optimization criteria are shown and compared with experimental results, supporting the feasibility of this approach. This method offers the possibility of independent modulation of two properties of the input light state, outperforming the use of a single screen.

2.
Opt Lett ; 46(19): 4761-4764, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34598193

ABSTRACT

We present here a theoretical analysis of the interaction between an ideal two-level quantum system and a super-oscillatory pulse, like the one proposed and successfully synthesized in [J. Opt.23, 075604 (2021)JOOPDB0150-536X10.1088/2040-8986/abfedf; arXiv:2106.09192 (2021)]. As a prominent feature, these pulses present a high efficiency of the central super-oscillatory region in relation to unavoidable sidelobes. Our study shows an increase in the effective bandwidth of the pulse in the super-oscillatory region, and not only the appearance of a local frequency higher than its highest Fourier-frequency component, as in the usual description of the phenomenon of super-oscillations. Beyond introducing the concept of effective super-bandwidth, the presented results could be relevant for experimental applications and opening new perspectives for laser-matter interaction.

3.
Opt Lett ; 44(10): 2558-2561, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31090731

ABSTRACT

We present a tomographic method which requires only 4d-3 measurement outcomes to reconstruct any pure quantum state of arbitrary dimension d. Using the proposed scheme, we have experimentally reconstructed a large number of pure states of dimension d=7, obtaining a mean fidelity of 0.94. Moreover, we performed numerical simulations of the reconstruction process, verifying the feasibility of the method for higher dimensions. In addition, the a priori assumption of purity can be certified within the same set of measurements, which represents an improvement with respect to other similar methods and contributes to answering the question of how many observables are needed to uniquely determine any pure state.

SELECTION OF CITATIONS
SEARCH DETAIL
...