Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-497047

ABSTRACT

The global evolution of SARS-CoV-2 depends in part upon the evolutionary dynamics within individual hosts with varying immune histories. To characterize the within-host evolution of acute SARS-CoV-2 infection, we deep sequenced saliva and nasal samples collected daily from immune and unvaccinated individuals early during infection. We show that longitudinal sampling facilitates high-confidence genetic variant detection and reveals evolutionary dynamics missed by less-frequent sampling strategies. Within-host dynamics in both naive and immune individuals appeared largely stochastic; however, we identified clear mutational hotspots within the viral genome, consistent with selection and differing between naive and immune individuals. In rare cases, minor genetic variants emerged to frequencies sufficient for forward transmission. Finally, we detected significant genetic compartmentalization of virus between saliva and nasal swab sample sites in many individuals. Altogether, these data provide a high-resolution profile of within-host SARS-CoV-2 evolutionary dynamics.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21262701

ABSTRACT

The global effort to vaccinate people against SARS-CoV-2 in the midst of an ongoing pandemic has raised questions about the nature of vaccine breakthrough infections and the potential for vaccinated individuals to transmit the virus. These questions have become even more urgent as new variants of concern with enhanced transmissibility, such as Delta, continue to emerge. To shed light on how vaccine breakthrough infections compare with infections in immunologically naive individuals, we examined viral dynamics and infectious virus shedding through daily longitudinal sampling in a small cohort of adults infected with SARS-CoV-2 at varying stages of vaccination. The durations of both infectious virus shedding and symptoms were significantly reduced in vaccinated individuals compared with unvaccinated individuals. We also observed that breakthrough infections are associated with strong tissue compartmentalization and are only detectable in saliva in some cases. These data indicate that vaccination shortens the duration of time of high transmission potential, minimizes symptom duration, and may restrict tissue dissemination.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20206250

ABSTRACT

The COVID-19 pandemic has generated an enormous amount of data, providing a unique opportunity for modeling and analysis. In this paper, we present a data-informed approach for building stochastic compartmental models that is grounded in the Markovian processes underlying these models. Our initial data analyses reveal that the SIRD model - susceptiple (S), infected (I), recovered (R), and death (D) - is not consistent with the data. In particular, the transition times expressed in the dataset do not obey exponential distributions, implying that there exist unmodeled (hidden) states. We make use of the available epidemiological data to inform the location of these hidden states, allowing us to develop an augmented compartmental model which includes states for hospitalization (H) and end of infectious viral shedding (V). Using the proposed model, we characterize delay distributions analytically and match model parameters to empirical quantities in the data to obtain a good model fit. Insights from an epidemiological perspective are presented, as well as their implications for mitigation and control strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...