Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Lancet Reg Health Am ; 21: 100498, 2023 May.
Article in English | MEDLINE | ID: mdl-37187486

ABSTRACT

Background: Dengue is a global problem that seems to be worsening, as hyper-urbanization associated with climate change has led to a significant increase in the abundance and geographical spread of its principal vector, the Aedes aegypti mosquito. Currently available solutions have not been able to stop the spread of dengue which shows the urgent need to implement alternative technologies as practical solutions. In a previous pilot trial, we demonstrated the efficacy and safety of the method 'Natural Vector Control' (NVC) in suppressing the Ae. aegypti vector population and in blocking the occurrence of an outbreak of dengue in the treated areas. Here, we expand the use of the NVC program in a large-scale 20 months intervention period in an entire city in southern Brazil. Methods: Sterile male mosquitoes were produced from locally sourced Ae. aegypti mosquitoes by using a treatment that includes double-stranded RNA and thiotepa. Weekly massive releases of sterile male mosquitoes were performed in predefined areas of Ortigueira city from November 2020 to July 2022. Mosquito monitoring was performed by using ovitraps during the entire intervention period. Dengue incidence data was obtained from the Brazilian National Disease Surveillance System. Findings: During the two epidemiological seasons, the intervention in Ortigueira resulted in up to 98.7% suppression of live progeny of field Ae. aegypti mosquitoes recorded over time. More importantly, when comparing the 2020 and 2022 dengue outbreaks that occurred in the region, the post-intervention dengue incidence in Ortigueira was 97% lower compared to the control cities. Interpretation: The NVC method was confirmed to be a safe and efficient way to suppress Ae. aegypti field populations and prevent the occurrence of a dengue outbreak. Importantly, it has been shown to be applicable in large-scale, real-world conditions. Funding: This study was funded by Klabin S/A and Forrest Innovations Ltd.

2.
J Infect Dis ; 224(6): 1005-1014, 2021 09 17.
Article in English | MEDLINE | ID: mdl-33507265

ABSTRACT

BACKGROUND: There is a steady rise in the global incidence of Aedes-borne arbovirus disease. It has become urgent to develop alternative solutions for mosquito vector control. We developed a new method of sterilization of male mosquitoes with the goal to suppress a local Aedes aegypti population and to prevent the spread of dengue. METHODS: Sterile male mosquitoes were produced from a locally acquired Ae. aegypti colony by using a treatment that includes double-stranded RNA and thiotepa. A field study was conducted with sterile mosquito releases being performed on a weekly basis in predefined areas. There were 2 intervention periods (INT1 and INT2), with treatment and control areas reversed between INT1 and INT2. RESULTS: During INT1, releases in the treated area resulted in up to 91.4% reduction of live progeny of field Ae. aegypti mosquitoes recorded over time, while the control neighborhoods (no releases of sterile male mosquitoes) remained highly infested. The successful implementations of the program during INT1 and INT2 were associated with 15.9-fold and 13.7-fold lower incidences of dengue in the treated area compared to the control areas, respectively. CONCLUSIONS: Our data show the success of this new sterile insect technology-based program in preventing the spread of dengue.


Subject(s)
Aedes , Dengue/epidemiology , Mosquito Control/methods , Mosquito Vectors/physiology , Animals , Brazil , Dengue/prevention & control , Dengue/transmission , Incidence , Insecta , Male , Mosquito Vectors/microbiology , Polypyrimidine Tract-Binding Protein , Technology
3.
Ecotoxicol Environ Saf ; 211: 111953, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33482495

ABSTRACT

In-vitro effects of sub-lethal concentrations of malathion, phenanthrene (Phe) and cadmium (Cd) were tested on Chironomus sancticaroli larvae in acute bioassays by measuring biochemical and molecular parameters. Malathion was evaluated at 0.001, 0.0564 and 0.1006 mg L-1; Phe at 0.0025, 1.25 and 2.44 mg L-1; and Cd at 0.001, 3.2 and 7.4 mg L-1. The recovery test carried out at the highest concentration of each compound showed that survival of larvae exposed to Phe ranged from 4% to 5%, while the effects of malathion and Cd were irreversible, not allowing the emergence of adults. Results showed that malathion and Cd inhibited AChE, EST-α and ES-ß activities at the two highest concentrations. Phe at 0.0025, 1.25 and 2.44 mg L-1; and Cd at 3.2 and 7.4 mg L-1 inhibited glutathione S-transferase activity. Oxidative stress was exclusively induced by the lowest concentration of malathion considering SOD activity once CAT was unaffected by the stressors. Lipid peroxidation was registered exclusively by malathion at the two highest concentrations, and total hemoglobin content was only reduced by Cd at the two highest concentrations. The relationship among biochemical results, examined using the PCA, evidenced that malathion and Cd concentrations were clustered into two groups, while Phe only formed one group. Four hemoglobin genes of C. sancticaroli were tested for the first time in this species, with Hemoglobin-C being upregulated by malathion. The toxicity ranking was malathion > Phe > Cd, while biochemical and molecular results showed the order malathion > Cd > Phe. Our results highlight the importance of combining different markers to understand the effects of the diverse compounds in aquatic organisms.


Subject(s)
Chironomidae/drug effects , Water Pollutants, Chemical/toxicity , Animals , Biological Assay , Cadmium/toxicity , Larva/drug effects , Lipid Peroxidation , Malathion/toxicity , Oxidative Stress/drug effects , Phenanthrenes/toxicity
4.
Ecotoxicol Environ Saf ; 139: 308-315, 2017 May.
Article in English | MEDLINE | ID: mdl-28167443

ABSTRACT

In-vivo effects of polybrominated diphenyl ethers (PBDEs) containing 3, 4 and 5 bromine atoms were tested on fourth-instar larvae of Chironomus sancticaroli (Diptera: Chironomidae) after 48h of exposure, by measuring the activity of the acetyl cholinesterase, alpha and beta esterases and glutathione S-transferase. The PBDE congeners 2,2',4-triBDE (BDE-17), 2,2',4,4'-tetraBDE (BDE-47) and 2,2',4,4',5-pentaBDE (BDE-99) were evaluated at 0.5, 1.0, 2.0 and 3.0ngmL-1. Acetyl cholinesterase activity decreased significantly (p≤0.05) at all evaluated concentrations of the three PBDE congeners, except for larvae exposed to BDE-17 at 1.0 and 2.0ngmL-1. The significant inhibition of acetyl cholinesterase activity ranged from 18% (BDE-47 at 0.5ngmL-1) to 72% (BDE-47 at 2.0ngmL-1). The enzymes alpha and beta esterase were also affected by the three congeners, reducing their activity from 14% (BDE-99 at 1.0ngmL-1) to 52% (BDE-47 at 2.0ngmL-1) and from 7% (BDE-99 at 2.0ngmL-1) to 34% (BDE-47 at 3.0ngmL-1) respectively. Substantial increments in glutathione S-transferase activity were similarly observed, varying from 138% (BDE-99 2.0 at ng mL-1) to 346% (BDE-17 at 1.0ngmL-1). DNA strand breaks were detected exclusively in larvae exposed to BDE-99 at 2.0 and 3.0ngmL-1 (H=11.7, p=0.019). These results showed that C. sancticaroli larvae were sensitive to the PBDEs treatments under the experimental conditions.


Subject(s)
Acetylcholinesterase/metabolism , Chironomidae/drug effects , Esterases/metabolism , Glutathione Transferase/metabolism , Halogenated Diphenyl Ethers/toxicity , Larva/drug effects , Animals , Chironomidae/enzymology , Larva/enzymology , Polybrominated Biphenyls/toxicity
5.
Rev. bras. entomol ; 59(3): 240-250, July-Sep. 2015. ilus
Article in English | LILACS | ID: lil-762020

ABSTRACT

ABSTRACTChironomidae immature are used as bioindicators of sediment quality in aquatic ecosystems and ecotoxicological assays. Histological descriptions for this family are outdated and limited and there are no studies with Neotropical species. The aim of this study was to describe the tissue architecture of several organs of the larva of Chironomus sancticaroli. For the description of the histological pattern, the larvae were fixed in Duboscq solution for insects at 56 °C, followed by routine histologic processing, infiltration in paraffin, and the sections were stained with Hematoxylin–Eosin. After examining the slides, the tube digestive, salivary gland, excretory, nervous, endocrine, circulatory, and integumentary systems and fat body were histologically characterized. The histology allows evaluation of cell morphology, and for being not expensive and easily accessible can be routinely used in biomonitoring. In addition, is a useful tool in ecotoxicological assays and allow to evaluate biomarkers at tissue and cell levels.

6.
Rev. bras. entomol ; 58(3): 296-301, July-Sept. 2014. tab
Article in English | LILACS | ID: lil-724039

ABSTRACT

Low malathion concentrations influence metabolism in Chironomus sancticaroli (Diptera, Chironomidae) in acute and chronic toxicity tests. Organophosphate compounds are used in agro-systems, and in programs to control pathogen vectors. Because they are continuously applied, organophosphates often reach water sources and may have an impact on aquatic life. The effects of acute and chronic exposure to the organophosphate insecticide malathion on the midge Chironomus sancticaroli are evaluated. To that end, three biochemical biomarkers, acetylcholinesterase (AChE), alpha (EST-α) and beta (EST-β) esterase were used. Acute bioassays with five concentrations of malathion, and chronic bioassays with two concentrations of malathion were carried out. In the acute exposure test, AChE, EST-α and EST-β activities declined by 66, 40 and 37%, respectively, at 0.251 µg L-1 and more than 80% at 1.37, 1.96 and 2.51 µg L-1. In chronic exposure tests, AChE and EST-α activities declined by 28 and 15% at 0.251 µg L-1. Results of the present study show that low concentrations of malathion can influence larval metabolism, indicating high toxicity for Chironomus sancticaroli and environmental risk associated with the use of organophosphates.

SELECTION OF CITATIONS
SEARCH DETAIL
...