Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 98(16): 9038-43, 2001 Jul 31.
Article in English | MEDLINE | ID: mdl-11470912

ABSTRACT

The major DNA photoproduct of dormant, UV-irradiated Bacillus subtilis spores is the thymine dimer 5-thyminyl-5,6-dihydrothymine [spore photoproduct (SP)]. During spore germination, SP is reversed to two intact thymines in situ by the DNA repair enzyme SP lyase, an S-adenosylmethionine (S-AdoMet)-dependent iron-sulfur ([Fe-S]) protein encoded by the splB gene. In the present work, cross-linking, SDS/PAGE, and size exclusion chromatography revealed that SplB protein dimerized when incubated with iron and sulfide under anaerobic reducing conditions. SplB isolated under aerobic conditions generated an EPR spectrum consistent with that of a partially degraded [3Fe-4S] center, and reduction of SplB with dithionite shifted the spectrum to that of a [4Fe-4S] center. Addition of S-AdoMet to SplB converted some of the [4Fe-4S] centers to an EPR-silent form consistent with electron donation to S-AdoMet. HPLC and electrospray ionization MS analyses showed that SP lyase cleaved S-AdoMet to generate 5'-deoxyadenosine. The results indicate that (i) SP lyase is a homodimer of SplB; (ii) dimer formation is coordinated by a [4Fe-4S] center; and (iii) the reduced [4Fe-4S] center is capable of donating electrons to S-AdoMet to generate a 5'-adenosyl radical that is then used for the in situ reversal of SP. Thus, SP lyase belongs to the "radical SAM" superfamily of enzymes that use [Fe-S] centers and S-AdoMet to generate adenosyl radicals to effect catalysis. SP lyase is unique in being the first and only DNA repair enzyme known to function via this novel enzymatic mechanism.


Subject(s)
Bacillus subtilis/enzymology , DNA Repair , Deoxyribodipyrimidine Photo-Lyase/metabolism , Proteins , Catalysis , Deoxyribodipyrimidine Photo-Lyase/chemistry , Dimerization , Electrophoresis, Polyacrylamide Gel , Protein Conformation
2.
J Bacteriol ; 182(22): 6412-7, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11053385

ABSTRACT

The predominant photolesion in the DNA of UV-irradiated dormant bacterial spores is the thymine dimer 5-thyminyl-5,6-dihydrothymine, commonly referred to as spore photoproduct (SP). A major determinant of SP repair during spore germination is its direct reversal by the enzyme SP lyase, encoded by the splB gene in Bacillus subtilis. SplB protein containing an N-terminal tag of six histidine residues [(6His)SplB] was purified from dormant B. subtilis spores and shown to efficiently cleave SP but not cyclobutane cis,syn thymine-thymine dimers in vitro. In contrast, SplB protein containing an N-terminal 10-histidine tag [(10His)SplB] purified from an Escherichia coli overexpression system was incompetent to cleave SP unless the 10-His tag was first removed by proteolysis at an engineered factor Xa site. To assay the parameters of binding of SplB protein to UV-damaged DNA, a 35-bp double-stranded oligonucleotide was constructed which carried a single pair of adjacent thymines on one strand. Irradiation of the oligonucleotide in aqueous solution or at 10% relative humidity resulted in formation of cyclobutane pyrimidine dimers (Py lozengePy) or SP, respectively. (10His)SplB was assayed for oligonucleotide binding using a DNase I protection assay. In the presence of (10His)SplB, the SP-containing oligonucleotide was selectively protected from DNase I digestion (half-life, >60 min), while the Py lozengePy-containing oligonucleotide and the unirradiated oligonucleotide were rapidly digested by DNase I (half-lives, 6 and 9 min, respectively). DNase I footprinting of (10His)SplB bound to the artificial substrate was carried out utilizing the (32)P end-labeled 35-bp oligonucleotide containing SP. DNase I footprinting showed that SplB protected at least a 9-bp region surrounding SP from digestion with DNase I with the exception of two DNase I-hypersensitive sites within the protected region. (10His)SplB also caused significant enhancement of DNase I digestion of the SP-containing oligonucleotide for at least a full helical turn 3' to the protected region. The data suggest that binding of SP lyase to SP causes significant bending or distortion of the DNA helix in the vicinity of the lesion.


Subject(s)
Bacillus subtilis/physiology , DNA, Bacterial/radiation effects , Deoxyribodipyrimidine Photo-Lyase/metabolism , Proteins , Thymine/analogs & derivatives , Bacillus subtilis/enzymology , DNA Repair , DNA, Bacterial/metabolism , Deoxyribodipyrimidine Photo-Lyase/genetics , Oligonucleotides/biosynthesis , Protein Binding , Pyrimidine Dimers/analysis , Spores, Bacterial/enzymology , Spores, Bacterial/radiation effects , Thymine/metabolism , Ultraviolet Rays
3.
J Bacteriol ; 180(18): 4879-85, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9733691

ABSTRACT

The major photoproduct in UV-irradiated spore DNA is the unique thymine dimer 5-thyminyl-5,6-dihydrothymine, commonly referred to as spore photoproduct (SP). An important determinant of the high UV resistance of Bacillus subtilis spores is the accurate in situ reversal of SP during spore germination by the DNA repair enzyme SP lyase. To study the molecular aspects of SP lyase-mediated SP repair, the cloned B. subtilis splB gene was engineered to encode SP lyase with a molecular tag of six histidine residues at its amino terminus. The engineered six-His-tagged SP lyase expressed from the amyE locus restored UV resistance to spores of a UV-sensitive mutant B. subtilis strain carrying a deletion-insertion mutation which removed the entire splAB operon at its natural locus and was shown to repair SP in vivo during spore germination. The engineered SP lyase was purified both from dormant B. subtilis spores and from an Escherichia coli overexpression system by nickel-nitrilotriacetic acid (NTA) agarose affinity chromatography and was shown by Western blotting, UV-visible spectroscopy, and iron and acid-labile sulfide analysis to be a 41-kDa iron-sulfur (Fe-S) protein, consistent with its amino acid sequence homology to the 4Fe-4S clusters in anaerobic ribonucleotide reductases and pyruvate-formate lyases. SP lyase was capable of reversing SP from purified SP-containing DNA in an in vitro reaction either when present in a cell-free extract prepared from dormant spores or after purification on nickel-NTA agarose. SP lyase activity was dependent upon reducing conditions and addition of S-adenosylmethionine as a cofactor.


Subject(s)
Acetyltransferases/metabolism , Bacillus subtilis/enzymology , DNA Repair , Deoxyribodipyrimidine Photo-Lyase/metabolism , Proteins , Ribonucleotide Reductases/metabolism , Deoxyribodipyrimidine Photo-Lyase/chemistry , S-Adenosylmethionine/metabolism , Spores, Bacterial/radiation effects , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL