Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 5): 98-106, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38699971

ABSTRACT

Molybdenum- or tungsten-dependent formate dehydrogenases have emerged as significant catalysts for the chemical reduction of CO2 to formate, with biotechnological applications envisaged in climate-change mitigation. The role of Met405 in the active site of Desulfovibrio vulgaris formate dehydrogenase AB (DvFdhAB) has remained elusive. However, its proximity to the metal site and the conformational change that it undergoes between the resting and active forms suggests a functional role. In this work, the M405S variant was engineered, which allowed the active-site geometry in the absence of methionine Sδ interactions with the metal site to be revealed and the role of Met405 in catalysis to be probed. This variant displayed reduced activity in both formate oxidation and CO2 reduction, together with an increased sensitivity to oxygen inactivation.


Subject(s)
Desulfovibrio vulgaris , Formate Dehydrogenases , Desulfovibrio vulgaris/enzymology , Desulfovibrio vulgaris/genetics , Formate Dehydrogenases/chemistry , Formate Dehydrogenases/genetics , Formate Dehydrogenases/metabolism , Catalytic Domain , Crystallography, X-Ray , Oxidation-Reduction , Models, Molecular , Formates/metabolism , Formates/chemistry , Carbon Dioxide/metabolism , Carbon Dioxide/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...