Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 72018 03 21.
Article in English | MEDLINE | ID: mdl-29560858

ABSTRACT

Non-malignant breast epithelial cells cultured in three-dimensional laminin-rich extracellular matrix (lrECM) form well organized, growth-arrested acini, whereas malignant cells form continuously growing disorganized structures. While the mechanical properties of the microenvironment have been shown to contribute to formation of tissue-specific architecture, how transient external force influences this behavior remains largely unexplored. Here, we show that brief transient compression applied to single malignant breast cells in lrECM stimulated them to form acinar-like structures, a phenomenon we term 'mechanical reversion.' This is analogous to previously described phenotypic 'reversion' using biochemical inhibitors of oncogenic pathways. Compression stimulated nitric oxide production by malignant cells. Inhibition of nitric oxide production blocked mechanical reversion. Compression also restored coherent rotation in malignant cells, a behavior that is essential for acinus formation. We propose that external forces applied to single malignant cells restore cell-lrECM engagement and signaling lost in malignancy, allowing them to reestablish normal-like tissue architecture.


Subject(s)
Breast/metabolism , Epithelial Cells/metabolism , Nitric Oxide/metabolism , Stress, Mechanical , Acinar Cells/drug effects , Acinar Cells/metabolism , Breast/cytology , Breast/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line , Cell Line, Tumor , Epithelial Cells/drug effects , Extracellular Matrix/metabolism , Humans , Laminin/metabolism , Laminin/pharmacology , Microscopy, Confocal , Signal Transduction/drug effects , Time-Lapse Imaging/methods
2.
PLoS One ; 12(11): e0188440, 2017.
Article in English | MEDLINE | ID: mdl-29176904

ABSTRACT

Oral cancer is the most common type of cancer among men in India and other countries in South Asia. Late diagnosis contributes significantly to this mortality, highlighting the need for effective and specific point-of-care diagnostic tools. The same regions with high prevalence of oral cancer have seen extensive growth in mobile phone infrastructure, which enables widespread access to telemedicine services. In this work, we describe the evaluation of an automated tablet-based mobile microscope as an adjunct for telemedicine-based oral cancer screening in India. Brush biopsy, a minimally invasive sampling technique was combined with a simplified staining protocol and a tablet-based mobile microscope to facilitate local collection of digital images and remote evaluation of the images by clinicians. The tablet-based mobile microscope (CellScope device) combines an iPad Mini with collection optics, LED illumination and Bluetooth-controlled motors to scan a slide specimen and capture high-resolution images of stained brush biopsy samples. Researchers at the Mazumdar Shaw Medical Foundation (MSMF) in Bangalore, India used the instrument to collect and send randomly selected images of each slide for telepathology review. Evaluation of the concordance between gold standard histology, conventional microscopy cytology, and remote pathologist review of the images was performed as part of a pilot study of mobile microscopy as a screening tool for oral cancer. Results indicated that the instrument successfully collected images of sufficient quality to enable remote diagnoses that show concordance with existing techniques. Further studies will evaluate the effectiveness of oral cancer screening with mobile microscopy by minimally trained technicians in low-resource settings.


Subject(s)
Cell Phone , Early Detection of Cancer/methods , Microscopy/methods , Mouth Neoplasms/diagnosis , Adult , Aged , Automation , Demography , Female , Humans , Image Processing, Computer-Assisted , India , Male , Middle Aged , Mouth Neoplasms/pathology , Pilot Projects , Sensitivity and Specificity , User-Computer Interface , Young Adult
3.
PLoS One ; 9(8): e101955, 2014.
Article in English | MEDLINE | ID: mdl-25111489

ABSTRACT

Cell-matrix and cell-cell mechanosensing are important in many cellular processes, particularly for epithelial cells. A crucial question, which remains unexplored, is how the mechanical microenvironment is altered as a result of changes to multicellular tissue structure during cancer progression. In this study, we investigated the influence of the multicellular tissue architecture on mechanical properties of the epithelial component of the mammary acinus. Using creep compression tests on multicellular breast epithelial structures, we found that pre-malignant acini with no lumen (MCF10AT) were significantly stiffer than normal hollow acini (MCF10A) by 60%. This difference depended on structural changes in the pre-malignant acini, as neither single cells nor normal multicellular acini tested before lumen formation exhibited these differences. To understand these differences, we simulated the deformation of the acini with different multicellular architectures and calculated their mechanical properties; our results suggest that lumen filling alone can explain the experimentally observed stiffness increase. We also simulated a single contracting cell in different multicellular architectures and found that lumen filling led to a 20% increase in the "perceived stiffness" of a single contracting cell independent of any changes to matrix mechanics. Our results suggest that lumen filling in carcinogenesis alters the mechanical microenvironment in multicellular epithelial structures, a phenotype that may cause downstream disruptions to mechanosensing.


Subject(s)
Breast Neoplasms/pathology , Breast/cytology , Breast/pathology , Epithelial Cells/cytology , Epithelial Cells/pathology , Mechanical Phenomena , Acinar Cells/cytology , Acinar Cells/pathology , Biomechanical Phenomena , Carcinogenesis , Cell Line, Tumor , Elasticity , Humans , Models, Biological , Signal Transduction , Tumor Microenvironment
4.
PLoS One ; 9(5): e96906, 2014.
Article in English | MEDLINE | ID: mdl-24824072

ABSTRACT

Use of optical imaging for medical and scientific applications requires accurate quantification of features such as object size, color, and brightness. High pixel density cameras available on modern mobile phones have made photography simple and convenient for consumer applications; however, the camera hardware and software that enables this simplicity can present a barrier to accurate quantification of image data. This issue is exacerbated by automated settings, proprietary image processing algorithms, rapid phone evolution, and the diversity of manufacturers. If mobile phone cameras are to live up to their potential to increase access to healthcare in low-resource settings, limitations of mobile phone-based imaging must be fully understood and addressed with procedures that minimize their effects on image quantification. Here we focus on microscopic optical imaging using a custom mobile phone microscope that is compatible with phones from multiple manufacturers. We demonstrate that quantitative microscopy with micron-scale spatial resolution can be carried out with multiple phones and that image linearity, distortion, and color can be corrected as needed. Using all versions of the iPhone and a selection of Android phones released between 2007 and 2012, we show that phones with greater than 5 MP are capable of nearly diffraction-limited resolution over a broad range of magnifications, including those relevant for single cell imaging. We find that automatic focus, exposure, and color gain standard on mobile phones can degrade image resolution and reduce accuracy of color capture if uncorrected, and we devise procedures to avoid these barriers to quantitative imaging. By accommodating the differences between mobile phone cameras and the scientific cameras, mobile phone microscopes can be reliably used to increase access to quantitative imaging for a variety of medical and scientific applications.


Subject(s)
Cell Phone , Diagnostic Imaging/instrumentation , Image Processing, Computer-Assisted/instrumentation , Microscopy/instrumentation , Photography/instrumentation , Diagnostic Imaging/methods , Humans , Image Processing, Computer-Assisted/methods , Microscopy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...