Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Psychiatr Res ; 150: 292-299, 2022 06.
Article in English | MEDLINE | ID: mdl-35429739

ABSTRACT

Psychiatry stands to benefit from brief non-pharmacological treatments that effectively reduce depressive symptoms. To address this need, we conducted a single-blind randomized clinical trial assessing how a 6-day immersive psychosocial training program, followed by 10-min daily psychosocial exercises for 30 days, improves depressive symptoms. Forty-five adults were block-randomized by depression score to two arms: (a) the immersive psychosocial training program and 10-min daily exercise group (36 days total; total n = 23; depressed at baseline n = 14); or (b) a gratitude journaling control group (36 days total; total n = 22; depressed at baseline n = 13). The self-report PHQ-9 was used to assess depression levels in both groups at three time points: baseline, study week one, and study week six. Depression severity improved over time, with a significantly greater reduction in the psychosocial training program group (-82.7%) vs. the control group (-23%), p = 0.02 for baseline vs. week six. The effect size for this reduction in depression symptoms was large for the intervention group (d = -1.3; 95% CI, -2.07, -0.45; p < 0.001) and small for the control group (d = -0.3; 95% CI, -0.68, 0.03; p = 0.22). Seventy-nine percent (11/14) of depressed participants in the intervention condition were in remission (PHQ-9 ≤ 4) by week one and 100% (14/14) were in remission at week six. Secondary measures of anxiety, stress, loneliness, and well-being also improved by 15-80% in the intervention group (vs. 0-34% in the control group), ps < 0.05. Overall, this brief, immersive psychosocial training program rapidly and substantially improved depression levels and several related secondary outcomes, suggesting that immersive interventions may be useful for reducing depressive symptoms and enhancing well-being.


Subject(s)
Anxiety , Depression , Adult , Anxiety/therapy , Anxiety Disorders , Depression/therapy , Humans , Loneliness , Single-Blind Method
3.
Physiol Behav ; 238: 113461, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34000295

ABSTRACT

The purpose of this study was to determine the impact of an immersive seminar, which included moderate intensities of physical activity, on learning when compared to traditional lecture format. Twenty-six healthy participants were randomly divided into an immersive seminar or traditional lecture format group and presented material related to positive psychology and human values/beliefs over the course of two days. Physical activity was collected using a bio-harness while salivary cortisol and perceptual measures of well-being were collected over the two days. Performance on an examination related to course material was used to assess learning. Average time spent over 65% of max heart rate, energy expenditure, total bounds, mechanical and physiological load were significantly greater in the immersive seminar group when compared to traditional lecture group. In addition, cortisol levels and perceptual measures of mood, focus, energy, and well-being were significantly greater in the immersive seminar when compared to the traditional lecture format. Participants in the immersive seminar demonstrated significantly greater memory retention of course material 30-days post lecture when compared to the traditional lecture group. These findings support incorporating more physical activity and increasing arousal in order to enhance learning of lecture material.


Subject(s)
Educational Measurement , Learning , Arousal , Exercise , Humans , Memory
4.
Phys Act Nutr ; 25(1): 42-55, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33887828

ABSTRACT

PURPOSE: This study investigated the effects of marine phytoplankton supplementation (Oceanix®, Tetraselmis chuii) on 1) maximal isometric strength and immune function in healthy humans following a oneweek high-intensity resistance-training program and 2) the proinflammatory cytokine response to exercise in a rat model. METHODS: In the human trial, 22 healthy male and female participants were randomly divided into marine phytoplankton and placebo groups. Following baseline testing, participants underwent a 14-day supplement loading phase before completing five consecutive days of intense resistance training. In the rat model, rats were randomly divided into four groups (n=7 per condition): (i) control, (ii) exercise, (iii) exercise + marine phytoplankton (2.55 mg/kg/day), or (iv) exercise + marine phytoplankton (5.1 mg/kg/day). Rats in the exercising groups performed treadmill exercise 5 days per week for 6 weeks. RESULTS: In the human model, marine phytoplankton prevented significant declines in the isometric peak rate of force development compared to placebo. Additionally, salivary immunoglobulin A concentration was significantly lower following the resistance training protocol in the placebo group but not in the marine phytoplankton group. Marine phytoplankton in exercising rats decreased intramuscular levels and serum concentrations of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß) and intramuscular concentrations of malondialdehyde. CONCLUSION: Marine phytoplankton prevented decrements in indices of functional exercise recovery and immune function. Mechanistically, these outcomes could be prompted by modulating the oxidative stress and proinflammatory cytokine response to exercise.

5.
Int J Sports Med ; 42(12): 1070-1082, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33352600

ABSTRACT

This study investigated the effects of marine phytoplankton supplementation on 1) perceived recovery and ground reaction forces in humans following a non-functional overreaching resistance-training program and 2) myogenic molecular markers associated with muscle cell recovery in a rat model. In the human trial, a 5-week resistance-training program with intentional overreaching on weeks 2 and 5 was implemented. Results indicate that marine phytoplankton prompted positive changes in perceived recovery at post-testing and, while both marine phytoplankton and placebo conditions demonstrated decreased peak and mean rate of force development following the overreaching weeks, placebo remained decreased at post-testing while marine phytoplankton returned to baseline levels. In the rat model, rats were divided into four conditions: (i) control, (ii) exercise, (iii) exercise + marine phytoplankton 2.55 mg·d-1, or (iv) exercise+marine phytoplankton 5.1 mg·d-1. Rats in exercising conditions performed treadmill exercise 5 d·wk-1 for 6 weeks. Marine phytoplankton in exercising rats increased positive and decrease negative myogenic factors regulating satellite cell proliferation. Taken together, marine phytoplankton improved perceptual and functional indices of exercise recovery in an overreaching human model and, mechanistically, this could be driven through cell cycle regulation and a potential to improve protein turnover.


Subject(s)
Muscle Development/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Phytoplankton , Resistance Training/methods , Animals , Biomarkers/blood , Cell Count , Cell Cycle/physiology , Double-Blind Method , Female , Humans , Male , Physical Conditioning, Animal , Rats , Rats, Wistar
6.
Nutr Metab Insights ; 13: 1178638820949239, 2020.
Article in English | MEDLINE | ID: mdl-33061414

ABSTRACT

BACKGROUND: Muscle mass is an important determinant of metabolic health and physical function. It has previously been demonstrated that the postprandial rise in circulating essential amino acids acts as the main stimulus for muscle protein synthesis (MPS). The current study investigated the postprandial plasma essential amino acid (EAA) and branched-chain amino acid (BCAA) responses of (1) Hydrolyzed whey protein isolate (HWPI) compared to plasma treated non-hydrolyzed whey protein isolate (PT-NHWPI), (2) standard branch-chain amino acids (S-BCAA) compared to plasma treated branch-chained amino acids (PT-BCAA), (3) standard pea protein (S-PP), compared to plasma treated pea protein (PT-PP), and (4) HWPI compared to PT-PP. METHODS: Ten subjects (24.6 ± 5.3 years; 178.8 ± 8.1 cm; 78.6 ± 10.1 kg) participated in a double-blind, randomized, crossover trial comparing four separate protein conditions (HWPI, PT-NHWPI, S-PP, PT-PP). A separate cohort of ten subjects (26.4 ± 7.4 years; 178.8 ± 5.9 cm; 85 ± 12.3 kg) participated in a double-blind randomized, crossover trial comparing two branch-chain amino acid conditions: S-BCAA and PT-BCAA. All conditions were administered following a 7-day washout. Plasma EAA and BCAA concentrations were assessed from blood donated by subjects at pre-consumption, 30-, 60-, 90-, 120-, and 180 minutes post-consumption. RESULTS: Blood plasma levels of total EAA and BCAA concentration were significantly greater in all treated conditions at 30-, 60-, 90-, and 120 minutes post consumption (P < .05). There were no differences between PT-PP and HWPI. DISCUSSION: All proteins significantly elevated EAAs, and BCAAs from basal levels. However, we conclude that the consumption of the treated proteins significantly raises blood levels of EAAs, and BCAAs to a greater extent across multiple dairy, vegan, and isolated BCAA conditions. Moreover, atmospheric plasma treatment of a vegan protein source makes its amino acid response similar to whey. Thus, protein supplementation with that has undergone Ingredient Optimized® atmospheric plasma treatment technology may be highly beneficial for improving the blood plasma amino acid response.

7.
Nutrients ; 12(7)2020 Jul 04.
Article in English | MEDLINE | ID: mdl-32635494

ABSTRACT

The purpose of this study was to investigate the impact of antioxidant-rich marine phytoplankton supplementation (Oceanix, OCX) on performance and muscle damage following a cross-training event in endurance-trained subjects. Additionally, an animal model was carried out to assess the effects of varying dosages of OCX, with exercise, on intramuscular antioxidant capacity. METHODS: In the human trial, endurance-trained subjects (average running distance = 29.5 ± 2.6 miles × week-1) were randomly divided into placebo (PLA) and OCX (25 mg) conditions for 14 days. The subjects were pre-tested on a one-mile uphill run, maximal isometric strength, countermovement jump (CMJ) and squat jump (SJ) power, and for muscle damage (creatine kinase (CK)). On Day 12, the subjects underwent a strenuous cross-training event. Measures were reassessed on Day 13 and 14 (24 h and 48 h Post event). In the animal model, Wistar rats were divided into four groups (n = 7): (i) Control (no exercise and placebo (CON)), (ii) Exercise (E), (iii) Exercise + OCX 1 (Oceanix, 2.55 mg/day, (iv) Exercise + OCX 2 (5.1 mg/day). The rats performed treadmill exercise five days a week for 6 weeks. Intramuscular antioxidant capacity (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px)) and muscle damage (CK and myoglobin (MYOB) were collected. The data were analyzed using repeated measures ANOVA and t-test for select variables. The alpha value was set at p < 0.05. RESULTS: For the human trial, SJ power lowered in PLA relative to OCX at 24 h Post (-15%, p < 0.05). Decrements in isometric strength from Pre to 48 h Post were greater in the PLA group (-12%, p < 0.05) than in the OCX. Serum CK levels were greater in the PLA compared to the OCX (+14%, p < 0.05). For the animal trial, the intramuscular antioxidant capacity was increased in a general dose-dependent manner (E + Oc2 > E + Oc1 > E > CON). Additionally, CK and MYOB were lower in supplemented compared to E alone. CONCLUSIONS: Phytoplankton supplementation (Oceanix) sustains performance and lowers muscle damage across repeated exercise bouts. The ingredient appears to operate through an elevating oxidative capacity in skeletal muscle.


Subject(s)
Antioxidants/administration & dosage , Dietary Supplements , Endurance Training/methods , Muscle, Skeletal/drug effects , Physical Conditioning, Animal/physiology , Phytoplankton , Adult , Animals , Antioxidants/metabolism , Catalase/metabolism , Creatine Kinase/blood , Dose-Response Relationship, Drug , Exercise/physiology , Female , Glutathione Peroxidase/metabolism , Humans , Isometric Contraction/drug effects , Male , Muscular Diseases/etiology , Muscular Diseases/prevention & control , Myoglobin/metabolism , Physical Functional Performance , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...