Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(10)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38469909

ABSTRACT

Wave packet interferometry with vacuum ultraviolet light has been used to probe a complex region of the electronic spectrum of molecular nitrogen, N2. Wave packets of Rydberg and valence states were excited by using double pulses of vacuum ultraviolet (VUV), free-electron-laser (FEL) light. These wave packets were composed of contributions from multiple electronic states with a moderate principal quantum number (n ∼ 4-9) and a range of vibrational and rotational quantum numbers. The phase relationship of the two FEL pulses varied in time, but as demonstrated previously, a shot-by-shot analysis allows the spectra to be sorted according to the phase between the two pulses. The wave packets were probed by angle-resolved photoionization using an infrared pulse with a variable delay after the pair of excitation pulses. The photoelectron branching fractions and angular distributions display oscillations that depend on both the time delays and the relative phases of the VUV pulses. The combination of frequency, time delay, and phase selection provides significant control over the ionization process and ultimately improves the ability to analyze and assign complex molecular spectra.

2.
Phys Rev Lett ; 128(15): 157205, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35499884

ABSTRACT

Triggering and switching magnetic moments is of key importance for applications ranging from spintronics to quantum information. A noninvasive ultrafast control at the nanoscale is, however, an open challenge. Here, we propose a novel laser-based scheme for generating atomic-scale charge current loops within femtoseconds. The associated orbital magnetic moments remain ferromagnetically aligned after the laser pulses have ceased and are localized within an area that is tunable via laser parameters and can be chosen to be well below the diffraction limit of the driving laser field. The scheme relies on tuning the phase, polarization, and intensities of two copropagating Gaussian and vortex laser pulses, allowing us to control the spatial extent, direction, and strength of the atomic-scale charge current loops induced in the irradiated sample upon photon absorption. In the experiment we used He atoms driven by an ultraviolet and infrared vortex-beam laser pulses to generate current-carrying Rydberg states and test for the generated magnetic moments via dichroic effects in photoemission. Ab initio quantum dynamic simulations and analysis confirm the proposed scenario and provide a quantitative estimate of the generated local moments.

3.
Opt Lett ; 47(6): 1411-1414, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35290326

ABSTRACT

We propose and numerically evaluate two schemes to generate a pair of extreme-ultraviolet monocycle pulses with gigawatt-level peak power, whose time delay and central wavelengths can be precisely controlled. The methods are based on coherent emission of radiation by an ultrarelativistic electron beam with a current profile given by a chirped sinusoid, which is generated through the interaction with a conventional broadband laser. The possibility to produce phase-locked attosecond pulses with independently tunable properties in the extreme-ultraviolet spectral region has the potential to significantly advance studies of charge dynamics in molecules of biological interests.

4.
Opt Lett ; 45(18): 5234-5237, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32932499

ABSTRACT

We propose a method to generate an isolated single-cycle pulse in the extreme-ultraviolet spectral region using a broadband conventional laser. The uncompressed laser pulse imprints a chirped sinusoid current profile onto a relativistic electron beam. As the beam propagates along a specifically tailored magnetic field of an undulator, it produces an isolated single-cycle pulse. For moderate laser intensities (0.2 mJ per pulse) and typical operating parameters of current electron accelerators, we predict a 26 as, 5 GW peak-power pulse spanning wavelengths down to 15 nm.

5.
Opt Express ; 27(21): 30875-30892, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31684330

ABSTRACT

In externally seeded free-electron lasers (FELs) that rely on a frequency upconversion scheme to generate intense short-wavelength light pulses, the slippage effect in the radiator imposes a lower limit on the FEL pulse duration, which is typically on the order of a few tens of femtoseconds. Recently it was proposed that a combination of a chirped microbunch and a tapered undulator can be used to break this limit. Although the method has the potential to reduce the FEL pulse duration down to a level that cannot be achieved by current state-of-the-art technology, it requires a very short seed pulse (∼ one optical cycle or less), making it challenging to put this concept into practical use. Here, we propose an alternative technique to relax the requirement on the seed pulse length. We show that the modified scheme allows generation of FEL pulses with durations much shorter than that determined by the seed pulse and the slippage effect. The performance of the method, which can easily be implemented at existing seeded FEL user facilities, is evaluated through a campaign of analytical calculations and simulations. For our set of typical seeded FEL parameters, we expect the generation of 1.6 fs long pulses at 26 nm with a peak power of 10 GW using a 20 fs long chirped seed pulse operating at 260 nm.

6.
J Synchrotron Radiat ; 18(Pt 2): 101-8, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21335894

ABSTRACT

It is shown that an elementary semi-quantitative approach explains essential features of the X-ray free-electron laser mechanism, in particular those of the gain and saturation lengths. Using mathematical methods and derivations simpler than complete theories, this treatment reveals the basic physics that dominates the mechanism and makes it difficult to realise free-electron lasers for short wavelengths. This approach can be specifically useful for teachers at different levels and for colleagues interested in presenting X-ray free-electron lasers to non-specialized audiences.

SELECTION OF CITATIONS
SEARCH DETAIL
...