Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 9301, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653989

ABSTRACT

Advanced oxidation processes are the most efficient tool to thwart the overaccumulation of harmful organic compounds in the environment. In this direction bioinspired metal complexes may be a viable solution for oxidative degradations in water. However, their synthesis is often elaborated and their scalability consequently low. This study presents alternative easy-to-synthesize bioinspired metal complexes to promote degradations in water. The metals employed were iron and manganese ions, hence cheap and highly accessible ions. The complexes were tested toward Phenol, Estrone, Triclosan, Oxybenzone, Diclofenac, Carbamazepine, Erythromycin, Aspartame, Acesulfame K, Anisole and 2,4-Dinitrotoluene. The reaction favoured electron-rich compounds reaching a removal efficiency of over 90%. The central ion plays a crucial role. Specifically, Mn(II) induces a non-radical pathway while iron ions a predominant radical one (⋅OH is predominant). The iron systems resulted more versatile toward contaminants, while the manganese ones showed a higher turn-over number, hence higher catalytic behaviour.

2.
Dalton Trans ; 52(26): 9017-9025, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37334566

ABSTRACT

The catalytic properties of an iron complex bearing a pentadentate cross-bridged ligand backbone are reported. With H2O2 as an oxidant, it displays moderate conversions in epoxidation and alkane hydroxylation and satisfactory ones in aromatic hydroxylation. Upon addition of an acid to the reaction medium, a significant enhancement in aromatic and alkene oxidation is observed. Spectroscopic analyses showed that accumulation of the expected FeIII(OOH) intermediate is limited under these conditions, unless an acid is added to the mixture. This is ascribed to the inertness induced by the cross-bridged ligand backbone, which is partly reduced under acidic conditions.

3.
Chemistry ; 28(53): e202201600, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-35735122

ABSTRACT

The one-electron reduction of the nonheme iron(III)-hydroperoxo complex, [FeIII (OOH)(L5 2 )]2+ (L5 2 =N-methyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine), carried out at -70 °C results in the release of dioxygen and in the formation of [FeII (OH)(L5 2 )]+ following a bimolecular process. This reaction can be performed either with cobaltocene as chemical reductant, or electrochemically. These experimental observations are consistent with the disproportionation of the hydroperoxo group in the putative FeII (OOH) intermediate generated upon reduction of the FeIII (OOH) starting complex. One plausible mechanistic scenario is that this disproportionation reaction follows an O-O heterolytic cleavage pathway via a FeIV -oxo species.


Subject(s)
Electrons , Ferric Compounds , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Iron/chemistry , Oxygen/chemistry , Reducing Agents
4.
Chemistry ; 28(28): e202200217, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35315975

ABSTRACT

We report two new FeIII complexes [L1 FeIII (H2 O)](OTf)2 and [L2 FeIII (OTf)], obtained by replacing pyridines by phenolates in a known non-heme aminopyridine iron complex. While the original, starting aminopyridine [(L5 2 )FeII (MeCN)](PF6 ) complex is stable in air, the potentials of the new FeIII/II couples decrease to the point that [L2 FeII ] spontaneously reduces O2 to superoxide. We used it as an O2 activator in an electrochemical setup, as its presence allows to generate superoxide at a much more accessible potential (>500 mV gain). Our aim was to achieve substrate oxidation via the reductive activation of O2 . While L2 FeIII (OTf) proved to be a good O2 activator but a poor oxidation system, its association with another complex (TPEN)FeII (PF6 )2 generates a complementary tandem couple for electro-assisted oxidation of substrates, working at a very accessible potential: upon reduction, L2 FeIII (OTf) activates O2 to superoxide and transfers it to (TPEN)FeII (PF6 )2 leading in fine to the oxidation of thioanisole.


Subject(s)
Ferric Compounds , Superoxides , Aminopyridines , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Iron , Oxidation-Reduction , Oxygen/chemistry , Sulfides
5.
Chem Sci ; 12(47): 15691-15699, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-35003600

ABSTRACT

Redox metalloenzymes achieve very selective oxidation reactions under mild conditions using O2 or H2O2 as oxidants and release harmless side-products like water. Their oxidation selectivity is intrinsically linked to the control of the oxidizing species generated during the catalytic cycle. To do so, a second coordination sphere is used in order to create a pull effect during the activation of O2 or H2O2, thus ensuring a heterolytic O-O bond cleavage. Herein, we report the synthesis and study of a new non-heme FeII complex bearing a pentaazadentate first coordination sphere and a pendant phenol group. Its reaction with H2O2 generates the classical FeIIIOOH species at high H2O2 loading. But at low H2O2 concentrations, an FeIVO species is generated instead. The formation of the latter is directly related to the presence of the 2nd sphere phenol group. Kinetic, variable temperature and labelling studies support the involvement of the attached phenol as a second coordination sphere moiety (weak acid) during H2O2 activation. Our results suggest a direct FeII → FeIVO conversion directed by the 2nd sphere phenol via the protonation of the distal O atom of the FeII/H2O2 adduct leading to a heterolytic O-O bond cleavage.

6.
Chemistry ; 26(51): 11887-11899, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32492221

ABSTRACT

A strategy is presented to improve the excited state reactivity of homoleptic copper-bis(diimine) complexes CuL2 + by increasing the steric bulk around CuI whereas preserving their stability. Substituting the phenanthroline at the 2-position by a phenyl group allows the implementation of stabilizing intramolecular π stacking within the copper complex, whereas tethering a branched alkyl chain at the 9-position provides enough steric bulk to rise the excited state energy E00 . Two novel complexes are studied and compared to symmetrical models. The impact of breaking the symmetry of phenanthroline ligands on the photophysical properties of the complexes is analyzed and rationalized thanks to a combined theoretical and experimental study. The importance of fine-tuning the steric bulk of the N-N chelate in order to stabilize the coordination sphere is demonstrated. Importantly, the excited state reactivity of the newly developed complexes is improved as demonstrated in the frame of a reductive quenching step, evidencing the relevance of our strategy.

7.
Chemistry ; 26(60): 13634-13643, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-32463553

ABSTRACT

We report on the synthesis and characterization of three iron(III) phosphasalen complexes, [FeIII (Psalen)(X)] differing in the nature of the counter-anion/exogenous ligand (X- =Cl- , NO3 - , OTf- ), as well as the neutral iron(II) analogue, [FeII (Psalen)]. Phosphasalen (Psalen) differs from salen by the presence of iminophosphorane (P=N) functions in place of the imines. All the complexes were characterized by single-crystal X-ray diffraction, UV/Vis, EPR, and cyclic voltammetry. The [FeII (Psalen)] complex was shown to remain tetracoordinated even in coordinating solvent but surprisingly exhibits a magnetic moment in line with a FeII high-spin ground state. For the FeIII complexes, the higher lability of triflate anion compared to nitrate was demonstrated. As they exhibit lower reduction potentials compared to their salen analogues, these complexes were tested for the coupling of 2-naphthol using O2 from air as oxidant. In order to shed light on this reaction, the interaction between 2-naphthol and the FeIII (Psalen) complexes was studied by cyclic voltammetry as well as UV/Vis spectroscopy.

8.
Chemistry ; 26(3): 659-668, 2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31696991

ABSTRACT

Rieske dioxygenases are metalloenzymes capable of achieving cis-dihydroxylation of aromatics under mild conditions using O2 and a source of electrons. The intermediate responsible for this reactivity is proposed to be a cis-FeV (O)(OH) moiety. Molecular models allow the generation of a FeIII (OOH) species with H2 O2 , to yield a FeV (O)(OH) species with tetradentate ligands, or {FeIV (O); OH. } pairs with pentadentate ones. We have designed a new pentadentate ligand, mtL4 2 , bearing a labile triazole, to generate an "in-between" situation. Two iron complexes, [(mtL4 2 )FeCl](PF6 ) and [(mtL4 2 )Fe(OTf)2 ]), were obtained and their reactivity towards aromatic substrates was studied in the presence of H2 O2 . Spectroscopic and kinetic studies reflect that triazole is bound at the FeII state, but decoordinates in the FeIII (OOH). The resulting [(mtL4 2 )FeIII (OOH)(MeCN)]2+ then lies on a bifurcated decay pathway (end-on homolytic vs. side-on heterolytic) depending on the addition of aromatic substrate: in the absence of substrate, it is proposed to follow a side-on pathway leading to a putative (N4 )FeV (O)(OH), while in the presence of aromatics it switches to an end-on homolytic pathway yielding a {(N5 )FeIV (O); OH. } reactive species, through recoordination of triazole. This switch significantly impacts the reaction regioselectivity.

9.
Dalton Trans ; 48(45): 17045-17051, 2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31696199

ABSTRACT

Activation of hydrogen peroxide by FeII salts (Fenton systems) leads to a myriad of oxidizing agents whose nature, FeIVO, or hydroxyl radicals and FeIII species, is dictated by the reaction conditions, in particular the pH value. Using the non heme FeII complex [FeII(L52)(CH3CN)]2+ (1) (where L52 is the pentadentate ligand N-methyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine) we have observed the simultaneous formation of two reaction intermediates, [FeIV(O)(L52)]2+ and [FeIII(OOH)(L52)]2+, in its reaction with excess hydrogen peroxide in the presence of sub-stoichiometric amounts of triethylamine. Kinetic and spectroscopic monitoring of the reaction mixture and of independently prepared [FeIV(O)(L52)]2+ in the presence of the different constituents of the reaction mixture allows drawing a mechanistic scheme. These two reactive species are formed simultaneously following two independent and competitive pathways. [FeIV(O)(L52)]2+ is obtained via heterolytic O-O cleavage of the oxidant assisted by the base in a peroxidase-like mechanism whereas [FeIII(OOH)(L52)]2+ is generated upon homolytic O-O cleavage of hydrogen peroxide. The relative contribution of these two pathways can be tuned by adjusting the amount of base used.

10.
Chemistry ; 25(53): 12405-12411, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31276256

ABSTRACT

The reactivity and selectivity of non-heme FeII complexes as oxidation catalysts can be substantially modified by alteration of the ligand backbone or introduction of various substituents. In comparison with the hexadentate ligand N,N,N',N'-tetrakis(pyridin-2-ylmethyl)ethane-1,2-diamine (TPEN), N,N'-bis[1-(pyridin-2-yl)ethyl]-N,N'-bis(pyridin-2-ylmethyl)ethane-1,2-diamine (2Me L6 2 ) has a methyl group on two of the four picolyl positions. FeII complexation by 2Me L6 2 yields two diastereomeric complexes with very similar structures, which only differ in the axial/equatorial positions occupied by the methylated pyridyl groups. In solution, these two isomers exhibit different magnetic behaviors. Whereas one isomer exhibits temperature-dependent spin-state conversion between the S=0 and S=2 states, the other is more reluctant towards this spin-state equilibrium and is essentially diamagnetic at room temperature. Their catalytic properties for the oxidation of anisole by H2 O2 are very different and correlate with their magnetic properties, which reflect their lability/inertness. These different properties most likely depend on the different steric constraints of the methylated pyridyl groups in the two complexes.

11.
Dalton Trans ; 46(44): 15249-15256, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29067368

ABSTRACT

A new calix[6]arene scaffold bearing a tris-imidazole binding site at the small rim and three tetradentate aza ligands at the large rim was synthesized. The system binds three CuII ions at the large rim sites and is unable to bind a fourth one, which remains in solution. The charge repulsion between the complexes, together with the flexibility of the scaffold, disorganizes the small rim site for binding and prevents its use for host-guest studies. Although the presence of MeCN or DMF guests does not alter this state, the addition of a heptylamine guest, which further displays Brønsted basicity, restores its receptor ability by stabilizing the extra CuII ion at the tris-imidazole site with concomitant guest encapsulation and binding of an exo hydroxo ligand. This chemoselective nuclearity switch yields a tetranuclear complex in which the guest backbone is preorganized in front of three potentially reactive Cu(ii) complexes, reminiscent of polynuclear CuII enzyme active sites.

12.
Chemistry ; 23(36): 8669-8677, 2017 Jun 27.
Article in English | MEDLINE | ID: mdl-28370654

ABSTRACT

The association of host-guest and coordination chemistry was used to develop a fluorescent molecular sensor. A calix[6]arene bearing three imidazole arms at the small rim and three quinoline fluorophores at the large rim was synthesized and characterized. A two-step coordination sequence was observed upon addition of ZnII . The first ZnII center binds the tris-imidazole small rim site, leading only to a small perturbation of the fluorescence. In contrast, a large bathochromic shift is observed upon binding of the second ZnII center at the large rim as a result of the direct interaction of ZnII with the quinoline fluorophores. The system acts as a selective receptor for primary amines. Host-guest adduct formation could be identified by a shift and enhancement of the fluorescence emission that is dependent on the length and shape of the primary amine. This system constitutes a fluorescent reporter with a selective response among primary amines.

13.
Chemistry ; 23(12): 2894-2906, 2017 Feb 24.
Article in English | MEDLINE | ID: mdl-28128474

ABSTRACT

A heteroditopic ligand associated with a calix[6]arene scaffold bearing a tris(imidazole) coordinating site at its small rim and an amine/pyridine ligand at its large rim has been prepared, and its regioselective coordination to ZnII at the small rim and FeII in the amine/pyridine ligand has been achieved. The heterodinuclear complex obtained displays an overall cone conformation capped by the tris(imidazole)ZnII moiety and bears a non-heme FeII complex at its base. Each of the metal centers exhibits one labile position, allowing the coordination inside the cavity of a guest alkylamine at ZnII and the generation of reaction intermediates (FeIII (OOH) and FeIV O) at the large rim. A dependence between the chain length of the encapsulated alkylamine and the distribution of FeIII (OOH) intermediates and FeIII (OMe) is observed. In addition, it is shown that the generation of the FeIV O intermediate is enhanced by addition of the alkylamine guest. Hence, this supramolecular system gathers the three levels of reactivity control encountered in oxidoreductases: i) control of the FeII redox properties through its first coordination sphere, allowing us to generate high valent reactive species; ii) control of guest binding through a hydrophobic funnel that drives its alkyl chain next to the reactive iron complex, thus mimicking the binding pocket of natural systems; iii) guest-modulated reactivity of the FeII center towards oxidants.

14.
Chem Soc Rev ; 44(2): 467-89, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25319612

ABSTRACT

The design of biomimetic complexes for the modeling of metallo-enzyme active sites is a fruitful strategy for obtaining fundamental information and a better understanding of the molecular mechanisms at work in Nature's chemistry. The classical strategy for modeling metallo-sites relies on the synthesis of metal complexes with polydentate ligands that mimic the coordination environment encountered in the natural systems. However, it is well recognized that metal ion embedment in the proteic cavity has key roles not only in the recognition events but also in generating transient species and directing their reactivity. Hence, this review focuses on an important aspect common to enzymes, which is the presence of a pocket surrounding the metal ion reactive sites. Through selected examples, the following points are stressed: (i) the design of biomimetic cavity-based complexes, (ii) their corresponding host-guest chemistry, with a special focus on problems related to orientation and exchange mechanisms of the ligand within the host, (iii) cavity effects on the metal ion binding properties, including 1st, 2nd, and 3rd coordination spheres and hydrophobic effects and finally (iv) the impact these factors have on the reactivity of embedded metal ions. Important perspectives lie in the use of this knowledge for the development of selective and sensitive probes, new reactions, and green and efficient catalysts with bio-inspired systems.


Subject(s)
Biomimetics , Coordination Complexes/chemistry , Calixarenes/chemistry , Cations , Cyclodextrins/chemistry , Enzymes/chemistry , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Conformation , Phenols/chemistry
15.
Org Biomol Chem ; 12(39): 7780-5, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25156383

ABSTRACT

Mono-functionalization of a molecular host is a key step for the development of various efficient systems ranging from supramolecular fluorescent probes to supramolecular catalysts. The presence of several identical reactive groups on the host makes its selective mono-functionalization a challenge. We propose a general two-step strategy to achieve this, based on the receptor properties of the host. A guest bearing two orthogonal functions is first reacted with the host presenting itself a reactive function that is complementary to one of those of the guest. As a result, the host is selectively mono-functionalized by the covalent capture of the guest, which inhibits further reaction of the host. The second function that was present on the guest and which is now covalently linked to the host can be activated in the second step for the grafting of various objects. As a proof of concept, the strategy is described on a calix[6]arene scaffold presenting three identical reactive units. Using Huisgen thermal azide-alkyne cycloaddition for the host-guest covalent-capture step, three examples of post-functionalization are described, allowing cavities bearing a single redox tag, fluorescent probe or polydentate ligand through esterification, Schiff base formation or nucleophilic substitution to be obtained.


Subject(s)
Calixarenes/chemistry , Phenols/chemistry , Models, Molecular , Molecular Conformation
16.
Inorg Chem ; 52(8): 4683-91, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23547739

ABSTRACT

Two new polytopic ligands based on a calix[6]arene scaffold were synthesized. The truncated cone-shaped calixarene was functionalized at its small rim by a tris-imidazole site, aimed at generating a tetrahedral Zn(II) complex, where a fourth labile site inside the cavity is accessible through the funnel provided by its large rim. Tridentate aza ligands (either two or three) were then grafted at this large rim (the entrance of the cavity). Zn(II) coordination studies, monitored by (1)H NMR spectroscopy, showed unprecedented behavior in this family of heteropolytopic ligands. Indeed, it gives access to complexes of various nuclearities in acetonitrile, where zinc binding is under the supramolecular control of the guest. It is first shown that, in the absence of a good guest donor (a primary amine), Zn(II) binding is favored at the large rim where two tridentate nitrogenous groups can form an octahedral complex. The addition of a long guest such as heptylamine induces the quantitative translocation of the Zn(II) ion from the large rim octahedral (O(h)) site to the small rim tetrahedral (T(d)) site provided by the trisimidazole core and the guest ligand. With 2 equiv of Zn(II), well-defined dinuclear complexes were obtained and isolated, with one Zn(II) ion bound at each rim. Interestingly, it is shown that the binding mode at the large rim is under the supramolecular control of the guest bound at the small rim (with short guests, the O(h) environment is obtained at the large rim, whereas long guests disrupt this core through an induced-fit process); the partially included and dangling alkyl chain opens the large rim (entrance of the cavity) and pushes apart the tridentate moieties. As a result, a guest-induced switch of Zn(II) binding mode occurs and frees one of the tridentate groups from coordination, allowing further extension of the complex nuclearity.

17.
Inorg Chem ; 52(2): 691-700, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23301704

ABSTRACT

We report the synthesis, characterization, and solution chemistry of a series of new Fe(II) complexes based on the tetradentate ligand N-methyl-N,N'-bis(2-pyridyl-methyl)-1,2-diaminoethane or the pentadentate ones N,N',N'-tris(2-pyridyl-methyl)-1,2-diaminoethane and N,N',N'-tris(2-pyridyl-methyl)-1,3-diaminopropane, modified by propynyl or methoxyphenyltriazolyl groups on the amino functions. Six of these complexes are characterized by X-ray crystallography. In particular, two of them exhibit an hexadentate coordination environment around Fe(II) with two amino, three pyridyl, and one triazolyl groups. UV-visible and cyclic voltammetry experiments of acetonitrile solutions of the complexes allow to deduce accurately the structure of all Fe(II) species in equilibrium. The stability of the complexes could be ranked as follows: [L(5)Fe(II)-py](2+) > [L(5)Fe(II)-Cl](+) > [L(5)Fe(II)-triazolyl](2+) > [L(5)Fe(II)-(NCMe)](2+), where L(5) designates a pentadentate coordination sphere composed of the two amines of ethanediamine and three pyridines. For complexes based on propanediamine, the hierarchy determined is [L(5)Fe(II)-Cl](+) > [L(5)Fe(II)(OTf)](+) > [L(5)Fe(II)-(NCMe)](2+), and no ligand exchange could be evidenced for [L(5)Fe(II)-triazolyl](2+). Reactivity of the [L(5)Fe(II)-triazolyl](2+) complexes with hydrogen peroxide and PhIO is similar to the one of the parent complexes that lack this peculiar group, that is, generation of Fe(III)(OOH) and Fe(IV)(O), respectively. Accordingly, the ability of these complexes at catalyzing the oxidation of small organic molecules by these oxidants follows the tendencies of their previously reported counterparts. Noteworthy is the remarkable cyclooctene epoxidation activity by these complexes in the presence of PhIO.


Subject(s)
Coordination Complexes/chemistry , Iron/chemistry , Nitrogen Compounds/chemistry , Pyridines/chemistry , Triazoles/chemistry , Catalysis , Ligands , Molecular Structure
18.
Inorg Chem ; 51(10): 5965-74, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22559150

ABSTRACT

A Calix[6]arene scaffold was functionalized to provide a tridentate binding site at the small rim and three bidentate chelate sites at the large rim of the cone to generate a heteropolytopic ligand. Its complexation to one equivalent of Zn(II) at the small rim yields a funnel complex displaying both host-guest properties and preorganization of the three chelate groups at the large rim. These two aspects allowed the full control of the binding events to regioselectively form dinuclear Zn(II) and heteropolynuclear Zn(II)/Cu(I) complexes. The heteropolynuclear systems all rely on the host-guest relationship thanks to the induced-fit behavior of the calix cavity. With the short guest MeCN, the large rim is preorganized into a trigonal tris-triazole core and accommodates a single Cu(I) ion. A long guest breaks this spatial arrangement, and three Cu(I) ions can then be bound at the tris-bidentate triazole-dimethylamine site at the large rim. In a noncoordinating solvent however, the tetranuclear complex is submitted to scrambling and the addition of exogenous π-acceptor ligands is required to control the binding of Cu(I) in a well-defined environment. Hindrance selectivity was then induced by the accessibility at the small rim site. Indeed, while CO can stabilize Cu(I) at both coordination sites, PPh(3) cannot fit into the cavity and forces Cu(I) to relocate at the large rim. The resulting well-defined symmetrical tetranuclear complex thus arises from the quite remarkable selective supramolecular assembly of nine partners (1 Zn(II), 3 Cu(I), 1 calixarene, 1 guest alkylamine, 3 PPh(3)).

19.
Chem Asian J ; 4(6): 892-903, 2009 Jun 02.
Article in English | MEDLINE | ID: mdl-19415710

ABSTRACT

The organic ligand bgxH(4), resulting from the condensation of two glutamate moieties on a xylene core, has been designed to generate chiral metal-organic frameworks with increased metal-metal distances in order to favor their potential porosity. The in situ reactivity of the ligand, through cyclization, led to the bpgxH(2) ligand, which displays an extremely rich architectural potential. Under formate-generating conditions, two 1D tubular and one 2D MOFs based on bpgxH(2) have been obtained, incorporating up to three different organic linkers, and organized in an exquisite hierarchical way by the combined effects of the flexibility, the coordinating groups, and the H-bonding groups of the ligand. Furthermore, the tubular structures display pockets where water molecules are encapsulated.


Subject(s)
Copper/chemistry , Organometallic Compounds/chemistry , Xylenes/chemistry , Amino Acids/chemistry , Crystallography, X-Ray , Ligands , Molecular Conformation , X-Ray Diffraction
20.
Inorg Chem ; 47(20): 9390-9, 2008 Oct 20.
Article in English | MEDLINE | ID: mdl-18800831

ABSTRACT

Reaction of L-cysteine with M(NO3)2 x xH2O (M = Cd, Zn) generates M(L-cysteinate), which feature one-dimensional substructures that can be viewed as fragments of bulk structures of CdS (rock salt high pressure phase) and ZnS (wurtzite) because of the bridging modes accessible to the sulfur atom of L-cysteine. The MS substructures are arranged in a regular and periodic fashion within the crystal via the carboxylate function of L-cysteine. Considering the structural similarities with bulk materials, the optical properties of M(L-cysteinate) were studied and indicate blue shifts of the band gap of 2.59 eV (M = Cd, compared to CdS rock salt) and 1.37 eV (M = Zn, compared to ZnS wurtzite) with respect to the bulk MS structures, due to the low dimensionality of the metal-sulfur arrangement. The chelating nature of the cysteine ligand imposes an unusual mer arrangement of three binding S moieties at Cd with a correspondingly high Cd coordination number in a chalcogenide-based material. Density of states calculations show strong electronic structure similarities with the bulk phases and rationalize the band gap changes.


Subject(s)
Amino Acids/chemistry , Nanostructures/chemistry , Semiconductors , Crystallography, X-Ray , Ligands , Quantum Theory , Spectrum Analysis , Stereoisomerism , Sulfur/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...