Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 13(12)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37847748

ABSTRACT

Relict species, like coelacanth, gingko, tuatara, are the remnants of formerly more ecologically and taxonomically diverse lineages. It raises the questions of why they are currently species-poor, have restrained ecology, and are often vulnerable to extinction. Estimating heterozygosity level and demographic history can guide our understanding of the evolutionary history and conservation status of relict species. However, few studies have focused on relict invertebrates compared to vertebrates. We sequenced the genome of Baronia brevicornis (Lepidoptera: Papilionidae), which is an endangered species, the sister species of all swallowtail butterflies, and is the oldest lineage of all extant butterflies. From a dried specimen, we were able to generate both long-read and short-read data and assembled a genome of 406 Mb for Baronia. We found a fairly high level of heterozygosity (0.58%) compared to other swallowtail butterflies, which contrasts with its endangered and relict status. Taking into account the high ratio of recombination over mutation, demographic analyses indicated a sharp decline of the effective population size initiated in the last million years. Moreover, the Baronia genome was used to study genome size variation in Papilionidae. Genome sizes are mostly explained by transposable elements activities, suggesting that large genomes appear to be a derived feature in swallowtail butterflies as transposable elements activity is recent and involves different transposable elements classes among species. This first Baronia genome provides a resource for assisting conservation in a flagship and relict insect species as well as for understanding swallowtail genome evolution.


Subject(s)
Butterflies , Animals , Butterflies/genetics , Genome Size , Phylogeny , DNA Transposable Elements/genetics , Genomics , Demography
2.
Mol Phylogenet Evol ; 183: 107758, 2023 06.
Article in English | MEDLINE | ID: mdl-36907224

ABSTRACT

The swallowtail genus Papilio (Lepidoptera: Papilionidae) is species rich, distributed worldwide, and has broad morphological habits and ecological niches. Because of its elevated species richness, it has been historically difficult to reconstruct a densely sampled phylogeny for this clade. Here we provide a taxonomic working list for the genus, resulting in 235 Papilio species, and assemble a molecular dataset of seven gene fragments representing ca. 80% of the currently described diversity. Phylogenetic analyses reconstructed a robust tree with highly supported relationships within subgenera, although a few nodes in the early history of the Old World Papilio remain unresolved. Contrasting with previous results, we found that Papilio alexanor is sister to all Old World Papilio and that the subgenus Eleppone is no longer monotypic. The latter includes the recently described Fijian Papilio natewa with the Australian Papilio anactus and is sister to subgenus Araminta (formerly included in subgenus Menelaides) occurring in Southeast Asia. Our phylogeny also includes rarely studied (P. antimachus, P. benguetana) or endangered species (P. buddha, P. chikae). Taxonomic changes resulting from this study are elucidated. Molecular dating and biogeographic analyses indicate that Papilio originated ca. 30 million years ago (Oligocene), in a northern region centered on Beringia. A rapid early Miocene radiation in the Paleotropics is revealed within Old World Papilio, potentially explaining their low early branch support. Most subgenera originated in the early to middle Miocene followed by synchronous southward biogeographic dispersals and repeated local extirpations in northern latitudes. This study provides a comprehensive phylogenetic framework for Papilio with clarification of subgeneric systematics and species taxonomic changes enumerated, which will facilitate further studies to address questions on their ecology and evolutionary biology using this model clade.


Subject(s)
Butterflies , Animals , Phylogeny , Australia , Butterflies/genetics , Biological Evolution , Asia, Southeastern
3.
Genome Biol Evol ; 15(4)2023 04 06.
Article in English | MEDLINE | ID: mdl-36896590

ABSTRACT

The world's largest butterfly is the microendemic Papua New Guinean Ornithoptera alexandrae. Despite years of conservation efforts to protect its habitat and breed this up-to-28-cm butterfly, this species still figures as endangered in the IUCN Red List and is only known from two allopatric populations occupying a total of only ∼140 km². Here we aim at assembling reference genomes for this species to investigate its genomic diversity, historical demography and determine whether the population is structured, which could provide guidance for conservation programs attempting to (inter)breed the two populations. Using a combination of long and short DNA reads and RNA sequencing, we assembled six reference genomes of the tribe Troidini, with four annotated genomes of O. alexandrae and two genomes of related species Ornithoptera priamus and Troides oblongomaculatus. We estimated the genomic diversity of the three species, and we proposed scenarios for the historical population demography using two polymorphism-based methods taking into account the characteristics of low-polymorphic invertebrates. Indeed, chromosome-scale assemblies reveal very low levels of nuclear heterozygosity across Troidini, which appears to be exceptionally low for O. alexandrae (lower than 0.01%). Demographic analyses demonstrate low and steadily declining Ne throughout O. alexandrae history, with a divergence into two distinct populations about 10,000 years ago. These results suggest that O. alexandrae distribution has been microendemic for a long time. It should also make local conservation programs aware of the genomic divergence of the two populations, which should not be ignored if any attempt is made to cross the two populations.


Subject(s)
Butterflies , Animals , Butterflies/genetics , Metagenomics , Demography , Genomics , Genome
4.
Syst Biol ; 71(3): 758-773, 2022 04 19.
Article in English | MEDLINE | ID: mdl-34613395

ABSTRACT

Estimating time-dependent rates of speciation and extinction from dated phylogenetic trees of extant species (timetrees), and determining how and why they vary, is key to understanding how ecological and evolutionary processes shape biodiversity. Due to an increasing availability of phylogenetic trees, a growing number of process-based methods relying on the birth-death model have been developed in the last decade to address a variety of questions in macroevolution. However, this methodological progress has regularly been criticized such that one may wonder how reliable the estimations of speciation and extinction rates are. In particular, using lineages-through-time (LTT) plots, a recent study has shown that there are an infinite number of equally likely diversification scenarios that can generate any timetree. This has led to questioning whether or not diversification rates should be estimated at all. Here, we summarize, clarify, and highlight technical considerations on recent findings regarding the capacity of models to disentangle diversification histories. Using simulations, we illustrate the characteristics of newly proposed "pulled rates" and their utility. We recognize that the recent findings are a step forward in understanding the behavior of macroevolutionary modeling, but they in no way suggest we should abandon diversification modeling altogether. On the contrary, the study of macroevolution using phylogenetic trees has never been more exciting and promising than today. We still face important limitations in regard to data availability and methods, but by acknowledging them we can better target our joint efforts as a scientific community. [Birth-death models; extinction; phylogenetics; speciation.].


Subject(s)
Biodiversity , Genetic Speciation , Biological Evolution , Phylogeny , Time
SELECTION OF CITATIONS
SEARCH DETAIL
...