Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 69: 183-194, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25481077

ABSTRACT

Membrane bioreactor (MBR) is increasingly used for municipal wastewater treatment and reuse and great concerns have been raised to some emerging trace pollutants found in aquatic environment in the last decade, notably the pharmaceuticals. As a consequence the removal of pharmaceutical micropollutants by MBRs has been extensively investigated. But there is still a lack of knowledge on the effects of the current presence of pharmaceutical micropollutants in domestic wastewaters on MBR fouling. Among the different pharmaceuticals, it was decided to focus on carbamazepine (CBZ), an anti-epileptic drug, because of its occurrence in domestic wastewaters and persistency in biological processes including MBRs. This paper focuses on the effects of continuous carbamazepine pollution on MBR fouling. A continuous introduction of CBZ into the MBR via the feed (about 90 µg L(-1) CBZ in the feed) provoked a TMP jump. It occurred just 1 day after the addition of CBZ in MBR and a significantly higher increase rate of TMP was also observed after 1 day after addition of CBZ in MBR, as compared to that before addition of CBZ. This indicates that the pharmaceutical stress induced by CBZ causes more severe membrane fouling. Addition of CBZ was shown to induce a significant increase of the concentration of proteins in the supernatant at the beginning several days then stabilized to original level whereas no significant change was found for polysaccharides. HPLC-SEC analysis showed that addition of CBZ induced a decrease of 100-1000 kDa protein-like SMPs and a more significant increase of 10-100 kDa protein-like SMPs in the supernatant. Moreover it was found that addition of CBZ in the MBR affected the sludge microbial activities, as a slight inhibition (about 20%) of the exogenous respiration rate was observed. The increased membrane fouling could be related to the change in biomass characteristics and supernatant quality after addition of CBZ in MBR. This study allows also suggesting that 10-100 kDa protein-like SMPs might accumulate inside the biocake that was formed on the membrane surface during MBR operation and play an important role in the TMP jump phenomenon.


Subject(s)
Biofouling , Bioreactors , Carbamazepine/chemistry , Membranes, Artificial , Pharmaceutical Preparations/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Biomass , Chromatography, Gel , Chromatography, High Pressure Liquid , Cities , Flocculation , Sewage/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...