Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732160

ABSTRACT

Despite the end of the pandemic, coronavirus disease 2019 (COVID-19) remains a major public health concern. The first waves of the virus led to a better understanding of its pathogenesis, highlighting the fact that there is a specific pulmonary vascular disorder. Indeed, COVID-19 may predispose patients to thrombotic disease in both venous and arterial circulation, and many cases of severe acute pulmonary embolism have been reported. The demonstrated presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within the endothelial cells suggests that direct viral effects, in addition to indirect effects of perivascular inflammation and coagulopathy, may contribute to pulmonary vasculopathy in COVID-19. In this review, we discuss the pathological mechanisms leading to pulmonary vascular damage during acute infection, which appear to be mainly related to thromboembolic events, an impaired coagulation cascade, micro- and macrovascular thrombosis, endotheliitis and hypoxic pulmonary vasoconstriction. As many patients develop post-COVID symptoms, including dyspnea, we also discuss the hypothesis of pulmonary vascular damage and pulmonary hypertension as a sequela of the infection, which may be involved in the pathophysiology of long COVID.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/virology , COVID-19/pathology , SARS-CoV-2/pathogenicity , Lung/blood supply , Lung/pathology , Lung/virology , Pulmonary Embolism/virology , Pulmonary Embolism/etiology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/virology , Hypertension, Pulmonary/pathology , Post-Acute COVID-19 Syndrome , Thrombosis/virology , Thrombosis/etiology , Thrombosis/pathology
3.
Commun Chem ; 7(1): 4, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172567

ABSTRACT

In situ structures of Platinum (Pt) nanoparticles (NPs) can be determined with graphene liquid cell transmission electron microscopy. Atomic-scale three-dimensional structural information about their physiochemical properties in solution is critical for understanding their chemical function. We here analyze eight atomic-resolution maps of small (<3 nm) colloidal Pt NPs. Their structures are composed of an ordered crystalline core surrounded by surface atoms with comparatively high mobility. 3D reconstructions calculated from cumulative doses of 8500 and 17,000 electrons/pixel, respectively, are characterized in terms of loss of atomic densities and atomic displacements. Less than 5% of the total number of atoms are lost due to dissolution or knock-on damage in five of the structures analyzed, whereas 10-16% are lost in the remaining three. Less than 5% of the atomic positions are displaced due to the increased electron irradiation in all structures. The surface dynamics will play a critical role in the diverse catalytic function of Pt NPs and must be considered in efforts to model Pt NP function computationally.

4.
Redox Biol ; 70: 103044, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38266577

ABSTRACT

Hyperglycemia increases the heart sensitivity to ischemia-reperfusion (IR), but the underlying cellular mechanisms remain unclear. Mitochondrial dynamics (the processes that govern mitochondrial morphology and their interactions with other organelles, such as the reticulum), has emerged as a key factor in the heart vulnerability to IR. However, it is unknown whether mitochondrial dynamics contributes to hyperglycemia deleterious effect during IR. We hypothesized that (i) the higher heart vulnerability to IR in hyperglycemic conditions could be explained by hyperglycemia effect on the complex interplay between mitochondrial dynamics, Ca2+ homeostasis, and reactive oxygen species (ROS) production; and (ii) the activation of DRP1, a key regulator of mitochondrial dynamics, could play a central role. Using transmission electron microscopy and proteomic analysis, we showed that the interactions between sarcoplasmic reticulum and mitochondria and mitochondrial fission were increased during IR in isolated rat hearts perfused with a hyperglycemic buffer compared with hearts perfused with a normoglycemic buffer. In isolated mitochondria and cardiomyocytes, hyperglycemia increased mitochondrial ROS production and Ca2+ uptake. This was associated with higher RyR2 instability. These results could contribute to explain the early mPTP activation in mitochondria from isolated hearts perfused with a hyperglycemic buffer and in hearts from streptozotocin-treated rats (to increase the blood glucose). DRP1 inhibition by Mdivi-1 during the hyperglycemic phase and before IR induction, normalized Ca2+ homeostasis, ROS production, mPTP activation, and reduced the heart sensitivity to IR in streptozotocin-treated rats. In conclusion, hyperglycemia-dependent DRP1 activation results in higher reticulum-mitochondria calcium exchange that contribute to the higher heart vulnerability to IR.


Subject(s)
Dynamins , Myocardial Reperfusion Injury , Ryanodine Receptor Calcium Release Channel , Animals , Rats , Calcium/metabolism , Coronary Artery Disease/metabolism , Hyperglycemia/metabolism , Mitochondria, Heart/metabolism , Mitochondrial Dynamics , Myocardial Reperfusion Injury/metabolism , Proteomics , Reactive Oxygen Species/metabolism , Reperfusion , Ryanodine Receptor Calcium Release Channel/metabolism , Streptozocin/metabolism , Streptozocin/pharmacology , Dynamins/metabolism
6.
Antioxidants (Basel) ; 12(7)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37508012

ABSTRACT

Muscle fatigue is a common symptom induced by exercise. A reversible loss of muscle force is observed with variable rates of recovery depending on the causes or underlying mechanisms. It can not only affect locomotion muscles, but can also affect the heart, in particular after intense prolonged exercise such as marathons and ultra-triathlons. The goal of our study was to explore the effect of four different natural extracts with recognized antioxidant properties on the contractile function of skeletal (locomotion) and cardiac muscles after a prolonged exhausting exercise. Male Wistar rats performed a bout of exhausting exercise on a treadmill for about 2.5 h and were compared to sedentary animals. Some rats received oral treatment of a natural extract (rosemary, buckwheat, Powergrape®, or rapeseed) or the placebo 24 h and 1 h before exercise. Experiments were performed 30 min after the race and after 7 days of recovery. All natural extracts had protective effects both in cardiac and skeletal muscles. The extent of protection was different depending on muscle type and the duration post-exercise (just after and after one-week recovery), including antiarrhythmic effect and anti-diastolic dysfunction for the heart, and faster recovery of contractility for the skeletal muscles. Moreover, the muscular protective effect varied between natural extracts. Our study shows that an acute antioxidant supplementation can protect against acute abnormal endogenous ROS toxicity, induced here by prolonged exhausting exercise.

7.
Res Sq ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37066342

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is protective in cardiovascular disease, lung injury and diabetes yet paradoxically underlies our susceptibility to SARs-CoV2 infection and the fatal heart and lung disease it can induce. Furthermore, diabetic patients have chronic, systemic inflammation and altered ACE2 expression resulting in increased risk of severe COVID-19 and the associated mortality. A drug that could increase ACE2 activity and inhibit cellular uptake of severe acute respiratory syndrome coronavirus 2 (SARs-CoV2), thus decrease infection, would be of high relevance to cardiovascular disease, diabetes and SARs-CoV2 infection. While the need for such a drug lead was highlighted over a decade ago receiving over 600 citations,1 to date, no such drugs are available.2 Here, we report the development of a novel ACE2 stimulator, designated '2A'(international PCT filed), which is a 10 amino acid peptide derived from a snake venom, and demonstrate its in vitro and in vivo efficacy against SARs-CoV2 infection and associated lung inflammation. Peptide 2A also provides remarkable protection against glycaemic dysregulation, weight loss and disease severity in a mouse model of type 1 diabetes. No untoward effects of 2A were observed in these pre-clinical models suggesting its strong clinical translation potential.

8.
Sci Rep ; 13(1): 1814, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36725868

ABSTRACT

Determining the 3D atomic structures of multi-element nanoparticles in their native liquid environment is crucial to understanding their physicochemical properties. Graphene liquid cell (GLC) TEM offers a platform to directly investigate nanoparticles in their solution phase. Moreover, exploiting high-resolution TEM images of single rotating nanoparticles in GLCs, 3D atomic structures of nanoparticles are reconstructed by a method called "Brownian one-particle reconstruction". We here introduce a 3D atomic structure determination method for multi-element nanoparticle systems. The method, which is based on low-pass filtration and initial 3D model generation customized for different types of multi-element systems, enables reconstruction of high-resolution 3D Coulomb density maps for ordered and disordered multi-element systems and classification of the heteroatom type. Using high-resolution image datasets obtained from TEM simulations of PbSe, CdSe, and FePt nanoparticles that are structurally relaxed with first-principles calculations in the graphene liquid cell, we show that the types and positions of the constituent atoms are precisely determined with root mean square displacement values less than 24 pm. Our study suggests that it is possible to investigate the 3D atomic structures of synthesized multi-element nanoparticles in liquid phase.

9.
Nutrients ; 15(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36615872

ABSTRACT

Hyperglycemia (HG) is associated with increased mortality and morbidity in acute ischemic events. Regardless of the tissue or organs involved, the vascular endothelium is a key target of ischemia-reperfusion (I/R) injury severity. Among endothelium-protective strategies, exercise has been widely described as useful. However, whether this strategy is able to impact the deleterious effect of HG on endothelial function during I/R has never been challenged. For this, 48 male Wistar rats were randomized into 4 groups: sedentary (Sed) or exercised (Ex, 45 min/day, 5 days/week for 5 weeks) rats, treated (hyperglycemic, HG) or not (normoglycemic, NG) with streptozotocin (40 mg/kg, 48 h before procedure). Vascular I/R (120/15 min) was performed by clamping the femoral artery. Arterial and downstream muscular perfusions were assessed using laser speckle contrast imaging. Vascular endothelial function was assessed in vivo 15 min after reperfusion. HG was responsible for impairment of reperfusion blood flow as well as endothelial function. Interestingly exercise was able to prevent those impairments in the HG group. In agreement with the previous results, HG increased reactive oxygen species production and decreased nitric oxide bioavailability whereas exercise training normalized these parameters. It, therefore, appears that exercise may be an effective prevention strategy against the exacerbation of vascular and muscular damage by hyperglycemia during I/R.


Subject(s)
Hyperglycemia , Reperfusion Injury , Rats , Male , Animals , Rats, Wistar , Ischemia/complications , Reperfusion Injury/prevention & control , Reperfusion Injury/complications , Reperfusion , Endothelium, Vascular
10.
Cardiovasc Drugs Ther ; 36(2): 245-256, 2022 04.
Article in English | MEDLINE | ID: mdl-33661433

ABSTRACT

PURPOSE: To evaluate the effectiveness of vitamin D3 supplementation, in secondary prevention, on cardiac remodeling and function, as well as lipid profile, in a mouse model of diet-induced type 2 diabetes. METHODS: Mice were fed a high fat and sucrose diet for 10 weeks. Afterward, diet was maintained for 15 more weeks and two groups were formed, with and without cholecalciferol supplementation. A control group was fed with normal chow. Glucose homeostasis and cardiac function were assessed at baseline and at the 10th and 24th weeks. Animals were killed at the 10th and 25th weeks for plasma and cardiac sample analysis. Cardiac lipid profile was characterized by LC-MS/MS. RESULTS: After 10 weeks of diet, mice exhibited pre-diabetes, mild left ventricle hypertrophy, and impaired longitudinal strain, but preserved myocardial circumferential as well as global diastolic and systolic cardiac function. After 15 more weeks of diet, animals presented with well-established type 2 diabetes, pathological cardiac hypertrophy, and impaired regional myocardial function. Cholecalciferol supplementation had no effect on glucose homeostasis but improved cardiac remodeling and regional myocardial function. After 25 weeks, non-supplemented mice exhibited increased myocardial levels of ceramides and diacylglycerol, both of which were normalized by vitamin D3 supplementation. CONCLUSION: This work brought to light the beneficial effects of cholecalciferol supplementation, in secondary prevention, on cardiac remodeling and function in a mouse model of diet-induced type 2 diabetes. Those cardioprotective effects may be, at least in part, attributed to the modulation of myocardial levels of lipotoxic species by vitamin D.


Subject(s)
Diabetes Mellitus, Type 2 , Ventricular Dysfunction, Left , Animals , Cholecalciferol/pharmacology , Chromatography, Liquid , Diabetes Mellitus, Type 2/drug therapy , Diet , Dietary Supplements , Disease Models, Animal , Glucose , Mice , Tandem Mass Spectrometry , Ventricular Dysfunction, Left/drug therapy , Ventricular Dysfunction, Left/prevention & control , Ventricular Remodeling
11.
Basic Res Cardiol ; 116(1): 66, 2021 12 23.
Article in English | MEDLINE | ID: mdl-34940922

ABSTRACT

Endothelial nitric oxide synthase (eNOS) activation in the heart plays a key role in exercise-induced cardioprotection during ischemia-reperfusion, but the underlying mechanisms remain unknown. We hypothesized that the cardioprotective effect of exercise training could be explained by the re-localization of eNOS-dependent nitric oxide (NO)/S-nitrosylation signaling to mitochondria. By comparing exercised (5 days/week for 5 weeks) and sedentary Wistar rats, we found that exercise training increased eNOS level and activation by phosphorylation (at serine 1177) in mitochondria, but not in the cytosolic subfraction of cardiomyocytes. Using confocal microscopy, we confirmed that NO production in mitochondria was increased in response to H2O2 exposure in cardiomyocytes from exercised but not sedentary rats. Moreover, by S-nitrosoproteomic analysis, we identified several key S-nitrosylated proteins involved in mitochondrial function and cardioprotection. In agreement, we also observed that the increase in Ca2+ retention capacity by mitochondria isolated from the heart of exercised rats was abolished by exposure to the NOS inhibitor L-NAME or to the reducing agent ascorbate, known to denitrosylate proteins. Pre-incubation with ascorbate or L-NAME also increased mitochondrial reactive oxygen species production in cardiomyocytes from exercised but not from sedentary animals. We confirmed these results using isolated hearts perfused with L-NAME before ischemia-reperfusion. Altogether, these results strongly support the hypothesis that exercise training increases eNOS/NO/S-nitrosylation signaling in mitochondria, which might represent a key mechanism of exercise-induced cardioprotection.


Subject(s)
Hydrogen Peroxide , Protein S , Animals , Mitochondria , Myocytes, Cardiac , Nitric Oxide , Nitric Oxide Synthase Type III , Rats , Rats, Wistar
12.
J Biol Chem ; 296: 100671, 2021.
Article in English | MEDLINE | ID: mdl-33864814

ABSTRACT

The SAGA-like complex SLIK is a modified version of the Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex. SLIK is formed through C-terminal truncation of the Spt7 SAGA subunit, causing loss of Spt8, one of the subunits that interacts with the TATA-binding protein (TBP). SLIK and SAGA are both coactivators of RNA polymerase II transcription in yeast, and both SAGA and SLIK perform chromatin modifications. The two complexes have been speculated to uniquely contribute to transcriptional regulation, but their respective contributions are not clear. To investigate, we assayed the chromatin modifying functions of SAGA and SLIK, revealing identical kinetics on minimal substrates in vitro. We also examined the binding of SAGA and SLIK to TBP and concluded that interestingly, both protein complexes have similar affinity for TBP. Additionally, despite the loss of Spt8 and C-terminus of Spt7 in SLIK, TBP prebound to SLIK is not released in the presence of TATA-box DNA, just like TBP prebound to SAGA. Furthermore, we determined a low-resolution cryo-EM structure of SLIK, revealing a modular architecture identical to SAGA. Finally, we performed a comprehensive study of DNA-binding properties of both coactivators. Purified SAGA and SLIK both associate with ssDNA and dsDNA with high affinity (KD = 10-17 nM), and the binding is sequence-independent. In conclusion, our study shows that the cleavage of Spt7 and the absence of the Spt8 subunit in SLIK neither drive any major conformational differences in its structure compared with SAGA, nor significantly affect HAT, DUB, or DNA-binding activities in vitro.


Subject(s)
Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Trans-Activators/metabolism , Transcription, Genetic , Protein Binding , Protein Conformation , Protein Subunits , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Trans-Activators/genetics
13.
Mol Nutr Food Res ; 65(6): e2000487, 2021 03.
Article in English | MEDLINE | ID: mdl-33450108

ABSTRACT

SCOPE: A main risk factor of atherosclerosis is a Western diet (WD) rich in n-6 polyunsaturated fatty acids (PUFAs) sensitive to oxidation. Their oxidation can be initiated by heme iron of red meat leading to the formation of 4-hydroxy-2-nonenal (4-HNE), a cytotoxic aldehyde. An increased 4-HNE production is implicated in endothelial dysfunction and atherosclerosis. By contrast, a diet rich in proanthocyanidins reduces oxidative stress and arterial diseases. This study evaluates the effects of a WD on vascular integrity in ApolipoproteinE (ApoE-/- ) mice and the protective capacity of apple extract and puree rich in antioxidant proanthocyanidins. METHODS AND RESULTS: ApoE-/- mice are fed during 12 weeks with a WD with or without n-6 PUFAs. Moreover, two WD + n-6 PUFAs groups are supplemented with apple puree or phenolic extract. An increase in digestive 4-HNE production associated with a rise in plasmatic 4-HNE and oxidized LDL concentrations is reported. Oxidizable n-6 PUFAs consumption is associated with a worsened endothelial dysfunction and atherosclerosis. Interestingly, supplementations with apple polyphenol extract or puree prevented these impairments while reducing oxidative stress. CONCLUSION: n-6 lipid oxidation during digestion may be a key factor of vascular impairments. Nevertheless, an antioxidant strategy can limit 4-HNE formation during digestion and thus durably protect vascular function.


Subject(s)
Atherosclerosis/prevention & control , Atherosclerosis/physiopathology , Diet, Western/adverse effects , Fatty Acids, Omega-6/pharmacokinetics , Malus/chemistry , Polyphenols/pharmacology , Aldehydes/analysis , Aldehydes/metabolism , Animals , Atherosclerosis/etiology , Dietary Supplements , Fatty Acids, Omega-6/metabolism , Lipoproteins, LDL/blood , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Nitric Oxide/metabolism , Oxidation-Reduction , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/prevention & control , Polyphenols/chemistry , Reactive Oxygen Species/metabolism
14.
Nano Lett ; 21(2): 1175-1183, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33416334

ABSTRACT

Active sites and catalytic activity of heterogeneous catalysts is determined by their surface atomic structures. However, probing the surface structure at an atomic resolution is difficult, especially for solution ensembles of catalytic nanocrystals, which consist of heterogeneous particles with irregular shapes and surfaces. Here, we constructed 3D maps of the coordination number (CN) and generalized CN (CN_) for individual surface atoms of sub-3 nm Pt nanocrystals. Our results reveal that the synthesized Pt nanocrystals are enclosed by islands of atoms with nonuniform shapes that lead to complex surface structures, including a high ratio of low-coordination surface atoms, reduced domain size of low-index facets, and various types of exposed high-index facets. 3D maps of CN_ are directly correlated to catalytic activities assigned to individual surface atoms with distinct local coordination structures, which explains the origin of high catalytic performance of small Pt nanocrystals in important reactions such as oxygen reduction reactions and CO electro-oxidation.

15.
Sci Adv ; 7(5)2021 Jan.
Article in English | MEDLINE | ID: mdl-33514557

ABSTRACT

Analysis of the three-dimensional (3D) structures of nanocrystals with solution-phase transmission electron microscopy is beginning to reveal their unique physiochemical properties. We developed a "one-particle Brownian 3D reconstruction method" based on imaging of ensembles of colloidal nanocrystals using graphene liquid cell electron microscopy. Projection images of differently rotated nanocrystals are acquired using a direct electron detector with high temporal (<2.5 ms) resolution and analyzed to obtain an ensemble of 3D reconstructions. Here, we introduce computational methods required for successful atomic-resolution 3D reconstruction: (i) tracking of the individual particles throughout the time series, (ii) subtraction of the interfering background of the graphene liquid cell, (iii) identification and rejection of low-quality images, and (iv) tailored strategies for 2D/3D alignment and averaging that differ from those used in biological cryo-electron microscopy. Our developments are made available through the open-source software package SINGLE.

16.
J Struct Biol X ; 4: 100040, 2020.
Article in English | MEDLINE | ID: mdl-33294840

ABSTRACT

We here introduce the third major release of the SIMPLE (Single-particle IMage Processing Linux Engine) open-source software package for analysis of cryogenic transmission electron microscopy (cryo-EM) movies of single-particles (Single-Particle Analysis, SPA). Development of SIMPLE 3.0 has been focused on real-time data processing using minimal CPU computing resources to allow easy and cost-efficient scaling of processing as data rates escalate. Our stream SPA tool implements the steps of anisotropic motion correction and CTF estimation, rapid template-based particle identification and 2D clustering with automatic class rejection. SIMPLE 3.0 additionally features an easy-to-use web-based graphical user interface (GUI) that can be run on any device (workstation, laptop, tablet or phone) and supports a remote multi-user environment over the network. The new project-based execution model automatically records the executed workflow and represents it as a flow diagram in the GUI. This facilitates meta-data handling and greatly simplifies usage. Using SIMPLE 3.0, it is possible to automatically obtain a clean SP data set amenable to high-resolution 3D reconstruction directly upon completion of the data acquisition, without the need for extensive image processing post collection. Only minimal standard CPU computing resources are required to keep up with a rate of ∼300 Gatan K3 direct electron detector movies per hour. SIMPLE 3.0 is available for download from simplecryoem.com.

18.
Redox Biol ; 34: 101554, 2020 07.
Article in English | MEDLINE | ID: mdl-32464499

ABSTRACT

INTRODUCTION: When confronted to stress or pathological conditions, the mitochondria overproduce reactive species that participate in the cellular dysfunction. These organelles are however difficult to target with antioxidants. A feature of mitochondria that can be used for this is the negatively charged compartments they form. Most of mitochondrion-targeting antioxidants are therefore cationic synthetic molecules. Our hypothesis is that such mitochondriotropic traits might also exists in natural molecules. AIM: We tested here whether sinapine, a natural phenolic antioxidant-bearing a permanent positive charge, can target mitochondria to modulate mitochondrial oxidative stress. METHODS: Experiments were performed in-vitro, in-cellulo, ex-vivo, and in-vivo, using cardiac tissue. The sinapic acid -lacking the positively-charged-choline-moiety present in sinapine-was used as a control. Sinapine entry into mitochondria was investigated in-vivo and in cardiomyocytes. We used fluorescent probes to detect cytosolic (H2DCFDA) and mitochondrial (DHR123) oxidative stress on cardiomyocytes induced with either hydrogen peroxide (H2O2) or antimycin A, respectively. Finally, ROS production was measured with DHE 10 min after ischemia-reperfusion (IR) on isolated heart, treated or not with sinapine, sinapic acid or with a known synthetic mitochondrion-targeted antioxidant (mitoTempo). RESULTS: We detected the presence of sinapine within mitochondria in-vitro, after incubation of isolated cardiomyocytes, and in-vivo, after oral treatment. The presence of sinapic acid was not detected in the mitochondria. Both the sinapine and the sinapic acid limited cytosolic oxidative stress in response to H2O2. Only sinapine was able to blunt oxidative stress resulting from antimycin A-induced mtROS. Both mitoTempo and sinapine improved cardiac functional recovery following IR. This was associated with lower ROS production within the cardiac tissue. CONCLUSION: Sinapine, a natural cationic hydrophilic phenol, commonly and substantially found in rapeseed species, effectively (i) enters within the mitochondria, (ii) selectively decreases the level of mitochondrial oxidative stress and, (iii) efficiently limits ROS production during cardiac ischemia-reperfusion.


Subject(s)
Hydrogen Peroxide , Myocytes, Cardiac , Antioxidants/metabolism , Antioxidants/pharmacology , Choline/analogs & derivatives , Coumaric Acids , Hydrogen Peroxide/metabolism , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism
19.
Free Radic Biol Med ; 152: 395-410, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32294509

ABSTRACT

Ischemic heart disease is one of the main causes of morbidity and mortality worldwide. Physical exercise is an effective lifestyle intervention to reduce the risk factors for cardiovascular disease and also to improve cardiac function and survival in patients with ischemic heart disease. Among the strategies that contribute to reduce heart damages during ischemia and reperfusion, regular physical exercise is efficient both in rodent experimental models and in humans. However, the cellular and molecular mechanisms of the cardioprotective effects of exercise remain unclear. During ischemia and reperfusion, mitochondria are crucial players in cell death, but also in cell survival. Although exercise training can influence mitochondrial function, the consequences on heart sensitivity to ischemic insults remain elusive. In this review, we describe the effects of physical activity on cardiac mitochondria and their potential key role in exercise-induced cardioprotection against ischemia-reperfusion damage. Based on recent scientific data, we discuss the role of different pathways that might help to explain why mitochondria are a key target of exercise-induced cardioprotection.


Subject(s)
Heart , Reperfusion Injury , Exercise , Exercise Therapy , Humans , Mitochondria, Heart
20.
Science ; 368(6486): 60-67, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32241943

ABSTRACT

Precise three-dimensional (3D) atomic structure determination of individual nanocrystals is a prerequisite for understanding and predicting their physical properties. Nanocrystals from the same synthesis batch display what are often presumed to be small but possibly important differences in size, lattice distortions, and defects, which can only be understood by structural characterization with high spatial 3D resolution. We solved the structures of individual colloidal platinum nanocrystals by developing atomic-resolution 3D liquid-cell electron microscopy to reveal critical intrinsic heterogeneity of ligand-protected platinum nanocrystals in solution, including structural degeneracies, lattice parameter deviations, internal defects, and strain. These differences in structure lead to substantial contributions to free energies, consequential enough that they must be considered in any discussion of fundamental nanocrystal properties or applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...