Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Probes ; 27(1): 1-5, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22906630

ABSTRACT

Using an acute promyelocytic leukemia (APL) preclinical model, we show that oncogene-specific PCR (Polymerase Chain Reaction)-based assays allow to evaluate the efficacy of immunotherapy combining all-trans retinoic acid (ATRA) and a DNA-based vaccine targeting the promyelocytic leukemia-retinoic acid receptor alpha (PML-RARα) oncogene. Kaplan-Meier survival analysis according to the peripheral blood PML-RARα normalized copy number (NCN) clearly shows that ATRA + DNA-treated mice with an NCN lower than 10 (43%) formed the group with a highly significant (p < 0.0001) survival advantage. Furthermore, a PCR assay was used to assess various tissues and organs for the presence of PML-RARα-positive cells in long-term survivors (n = 15). As expected, the majority of mice (n = 10) had no measurable tissue level of PML-RARα. However, five mice showed a weak positive signal in both the brain and spleen (n = 2), in the brain only (n = 2) and in the spleen only (n = 1). Thus tracking the oncogene-positive cells in long-term survivors reveals for the first time that extramedullary PML-RARα-positive cell reservoirs such as the brain may persist and be involved in relapses.


Subject(s)
Immunotherapy , Leukemia, Promyelocytic, Acute/therapy , Oncogene Proteins, Fusion/metabolism , Tretinoin/therapeutic use , Vaccines, DNA/therapeutic use , Animals , Brain/cytology , Gene Dosage , Kaplan-Meier Estimate , Leukemia, Promyelocytic, Acute/mortality , Mice , Mice, Transgenic , Neoplasm Proteins/therapeutic use , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/immunology , Spleen/cytology , Treatment Outcome
2.
Blood ; 115(3): 653-6, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-19965687

ABSTRACT

DNA vaccination and all-trans retinoic acid (ATRA) result in a survival advantage in a mouse model of acute promyelocytic leukemia (APL). Depletion of CD4(+) or CD8(+) cells abolished this effect. CD4(+) depletions of long-term survivors resulted in relapse and death within 3 months, thus demonstrating the need of both CD4(+) and CD8(+) subsets for the generation of DNA-driven antileukemic immune responses and underscoring a crucial role of CD4(+) cells in the maintenance of durable remissions. Degranulation and cytotoxic carboxyfluorescein diacetate succinimidyl ester-based assays showed major histocompatibility complex-restricted APL-specific T cell-mediated immune responses. Sorted APL-specific CD8(+)CD107a(+) T cells showed an increase of antileukemic activity. Effectors from ATRA + DNA-treated mice were shown to secrete interferon-gamma when stimulated with either APL cells or peptides from the promyelocytic leukemia-RARalpha vaccine-derived sequences as detected by ELISpot assays. Our results demonstrate that DNA vaccination with ATRA confers the effective boosting of interferon-gamma-producing and cytotoxic T cells in the leukemic mice.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunity, Cellular , Leukemia, Promyelocytic, Acute/therapy , Tretinoin/administration & dosage , Vaccines, DNA/administration & dosage , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Combined Modality Therapy , Disease Models, Animal , Humans , Immunity, Cellular/drug effects , Immunity, Cellular/genetics , Leukemia, Promyelocytic, Acute/immunology , Leukemia, Promyelocytic, Acute/pathology , Lymphocyte Activation/drug effects , Lymphocyte Activation/genetics , Mice , Oncogene Proteins, Fusion/administration & dosage , Oncogene Proteins, Fusion/genetics , Survival Analysis , Treatment Outcome , Tumor Cells, Cultured , Vaccines, DNA/metabolism , Xenograft Model Antitumor Assays
3.
Cancer Res ; 67(24): 11657-67, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-18089795

ABSTRACT

Myelodysplastic syndromes (MDS) are clonal stem cell hematologic disorders that evolve to acute myeloid leukemia (AML) and thus model multistep leukemogenesis. Activating RAS mutations and overexpression of BCL-2 are prognostic features of MDS/AML transformation. Using NRASD12 and BCL-2, we created two distinct models of MDS and AML, where human (h)BCL-2 is conditionally or constitutively expressed. Our novel transplantable in vivo models show that expression of hBCL-2 in a primitive compartment by mouse mammary tumor virus-long terminal repeat results in a disease resembling human MDS, whereas the myeloid MRP8 promoter induces a disease with characteristics of human AML. Expanded leukemic stem cell (Lin(-)/Sca-1(+)/c-Kit(+)) populations and hBCL-2 in the increased RAS-GTP complex within the expanded Sca-1(+) compartment are described in both MDS/AML-like diseases. Furthermore, the oncogenic compartmentalizations provide the proapoptotic versus antiapoptotic mechanisms, by activating extracellular signal-regulated kinase and AKT signaling, in determination of the neoplastic phenotype. When hBCL-2 is switched off with doxycycline in the MDS mice, partial reversal of the phenotype was observed with persistence of bone marrow blasts and tissue infiltration as RAS recruits endogenous mouse (m)BCL-2 to remain active, thus demonstrating the role of the complex in the disease. This represents the first in vivo progression model of MDS/AML dependent on the formation of a BCL-2:RAS-GTP complex. The colocalization of BCL-2 and RAS in the bone marrow of MDS/AML patients offers targeting either oncogene as a therapeutic strategy.


Subject(s)
Genes, bcl-2 , Genes, ras , Myelodysplastic Syndromes/genetics , Animals , Bone Marrow Transplantation , Cell Transplantation , Colony-Forming Units Assay , Disease Models, Animal , Disease Progression , Immunophenotyping , Leukemia/genetics , Leukemia, Myeloid/genetics , Mice , Mice, Transgenic , Microscopy, Confocal , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/physiopathology , Spleen
4.
Cancer Res ; 67(18): 8762-71, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17875717

ABSTRACT

Myelodysplastic syndromes (MDS) comprise a heterogeneous group of disorders characterized by ineffective hematopoiesis, with an increased propensity to develop acute myelogenous leukemia (AML). The molecular basis for MDS progression is unknown, but a key element in MDS disease progression is loss of chromosomal material (genomic instability). Using our two-step mouse model for myeloid leukemic disease progression involving overexpression of human mutant NRAS and BCL2 genes, we show that there is a stepwise increase in the frequency of DNA damage leading to an increased frequency of error-prone repair of double-strand breaks (DSB) by nonhomologous end-joining. There is a concomitant increase in reactive oxygen species (ROS) in these transgenic mice with disease progression. Importantly, RAC1, an essential component of the ROS-producing NADPH oxidase, is downstream of RAS, and we show that ROS production in NRAS/BCL2 mice is in part dependent on RAC1 activity. DNA damage and error-prone repair can be decreased or reversed in vivo by N-acetyl cysteine antioxidant treatment. Our data link gene abnormalities to constitutive DNA damage and increased DSB repair errors in vivo and provide a mechanism for an increase in the error rate of DNA repair with MDS disease progression. These data suggest treatment strategies that target RAS/RAC pathways and ROS production in human MDS/AML.


Subject(s)
DNA Damage , DNA Repair , Genomic Instability , Leukemia, Myeloid/genetics , Reactive Oxygen Species/metabolism , Animals , Disease Models, Animal , Disease Progression , Genes, bcl-2 , Genes, ras , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/pathology , Mice , Mice, Transgenic
5.
Hum Immunol ; 64(2): 231-7, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12559625

ABSTRACT

Human cytomegalovirus has evolved multiple strategies to interfere with immune recognition by the host. A variety of mechanisms affect antigen presentation by major histocompatibility complex class I molecules resulting in a reduced class I cell-surface expression. This downregulation is expected to trigger natural killer (NK) cytotoxicity, requiring counteraction by the virus to establish long-term infection. Here we describe that the human cytomegalovirus gpUS6 protein, which has been demonstrated to downregulate the expression of human leukocyte antigen (HLA) class I and the presentation of cytotoxic T lymphocyte epitopes by blocking transporter associated with antigen presentation (TAP function), does not affect the ability of HLA-E to inhibit NK cell mediated lysis of K-562 cells by interaction with CD94/NKG2A expressed on NK cells. Cell surface expression and function of HLA-E is not altered although gpUS6 inhibits TAP-dependent peptide transport by 95%. Moreover, HLA-E molecules presenting HLA class I signal sequence-derived peptides are functionally detectable on transfected TAP-deficient RMA-S cells.


Subject(s)
ATP-Binding Cassette Transporters/antagonists & inhibitors , HLA Antigens/immunology , Histocompatibility Antigens Class I/immunology , Killer Cells, Natural/immunology , RNA-Binding Proteins/physiology , Viral Proteins/physiology , ATP Binding Cassette Transporter, Subfamily B, Member 2 , Animals , Antigen Presentation , Antigens, CD/immunology , Cytotoxicity, Immunologic , Gene Expression Regulation , Genes, MHC Class I , HLA Antigens/biosynthesis , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/immunology , Humans , K562 Cells , Lectins, C-Type/immunology , Lymphocyte Activation , Mice , NK Cell Lectin-Like Receptor Subfamily C , NK Cell Lectin-Like Receptor Subfamily D , Peptide Fragments/immunology , Peptide Fragments/metabolism , Receptors, Immunologic/immunology , Receptors, Natural Killer Cell , Recombinant Fusion Proteins/immunology , Transfection , HLA-E Antigens
6.
Hum Immunol ; 64(3): 315-26, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12590976

ABSTRACT

Nonclassical major histocompatibility complex (MHC) class I human leukocyte antigen E (HLA-E) and HLA-G molecules differ from classical ones by specific patterns of transcription, protein expression, and immunotolerant functions. The HLA-G molecule can be expressed as four membrane-bound (HLA-G1 to -G4) and three soluble (HLA-G5 to -G7) proteins upon alternative splicing of its primary transcript. In this study, we describe a new set of monoclonal antibodies (mAbs) called MEM-G/01, -G/04, -G/09, -G/13, MEM-E/02, and -E/06 recognizing HLA-G or HLA-E. The pattern of reactivity of these mAbs were analyzed on transfected cells by flow cytometry, Western blotting, and immunochemistry. MEM-G/09 and -G/13 mAbs react exclusively with native HLA-G1 molecules, as the 87G mAb. MEM-G/01 recognizes (similar to the 4H84 mAb) the denatured HLA-G heavy chain of all isoforms, whereas MEM-G/04 recognizes selectively denatured HLA-G1, -G2, and -G5 isoforms. MEM-E/02 and -E/06 mAbs bind the denatured and cell surface HLA-E molecules, respectively. These mAbs were then used to analyze the expression of HLA-G and HLA-E on freshly isolated cytotrophoblast cells, on the JEG-3 placental tumor cell line, and on cryopreserved and paraffin-embedded serial sections of trophoblast tissue. These new mAbs represent valuable tools to study the expression of HLA-G and HLA-E molecules in cells and tissues under normal and pathologic conditions.


Subject(s)
Antibodies, Monoclonal/immunology , Genes, MHC Class I , HLA Antigens/immunology , Histocompatibility Antigens Class I/immunology , Antigens, Surface/immunology , Female , Flow Cytometry/methods , Gene Expression Regulation , HLA Antigens/analysis , HLA Antigens/chemistry , HLA-G Antigens , Histocompatibility Antigens Class I/analysis , Histocompatibility Antigens Class I/chemistry , Humans , Immunochemistry/methods , Placenta/immunology , Pregnancy , beta 2-Microglobulin/immunology , HLA-E Antigens
SELECTION OF CITATIONS
SEARCH DETAIL
...