Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 18(1): 972, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29246116

ABSTRACT

BACKGROUND: The Sertoli cells act to induce testis differentiation and subsequent development in fetal and post-natal life which makes them key to an understanding of testis biology. As a major step towards characterisation of factors involved in Sertoli cell function we have identified Sertoli cell-specific transcripts in the mouse testis and have used the data to identify Sertoli cell-specific transcripts altered in mice lacking follicle-stimulating hormone receptors (FSHRKO) and/or androgen receptors (AR) in the Sertoli cells (SCARKO). RESULTS: Adult iDTR mice were injected with busulfan to ablate the germ cells and 50 days later they were treated with diphtheria toxin (DTX) to ablate the Sertoli cells. RNAseq carried out on testes from control, busulfan-treated and busulfan + DTX-treated mice identified 701 Sertoli-specific transcripts and 4302 germ cell-specific transcripts. This data was mapped against results from microarrays using testicular mRNA from 20 day-old FSHRKO, SCARKO and FSHRKO.SCARKO mice. Results show that of the 534 Sertoli cell-specific transcripts present on the gene chips, 85% were altered in the FSHRKO mice and 94% in the SCARKO mice (mostly reduced in both cases). In the FSHRKO.SCARKO mice additive or synergistic effects were seen for most transcripts. Age-dependent studies on a selected number of Sertoli cell-specific transcripts, showed that the marked effects in the FSHRKO at 20 days had largely disappeared by adulthood although synergistic effects of FSHR and AR knockout were seen. CONCLUSIONS: These studies have identified the Sertoli cell-specific transcriptome in the mouse testis and have shown that most genes in the transcriptome are FSH- and androgen-dependent at puberty although the importance of FSH diminishes towards adulthood.


Subject(s)
Receptors, Androgen/genetics , Receptors, FSH/genetics , Sertoli Cells/metabolism , Testis/metabolism , Androgens/physiology , Animals , Busulfan/pharmacology , Diphtheria Toxin/pharmacology , Follicle Stimulating Hormone/physiology , Male , Mice , Mice, Knockout , Spermatozoa/metabolism , Testis/drug effects , Transcriptome/drug effects
2.
Andrology ; 3(6): 1035-49, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26446427

ABSTRACT

Testicular development and function is the culmination of a complex process of autocrine, paracrine and endocrine interactions between multiple cell types. Dissecting this has classically involved the use of systemic treatments to perturb endocrine function, or more recently, transgenic models to knockout individual genes. However, targeting genes one at a time does not capture the more wide-ranging role of each cell type in its entirety. An often overlooked, but extremely powerful approach to elucidate cellular function is the use of cell ablation strategies, specifically removing one cellular population and examining the resultant impacts on development and function. Cell ablation studies reveal a more holistic overview of cell-cell interactions. This not only identifies important roles for the ablated cell type, which warrant further downstream study, but also, and importantly, reveals functions within the tissue that occur completely independently of the ablated cell type. To date, cell ablation studies in the testis have specifically removed germ cells, Leydig cells, macrophages and recently Sertoli cells. These studies have provided great leaps in understanding not possible via other approaches; as such, cell ablation represents an essential component in the researchers' tool-kit, and should be viewed as a complement to the more mainstream approaches to advancing our understanding of testis biology. In this review, we summarise the cell ablation models used in the testis, and discuss what each of these have taught us about testis development and function.


Subject(s)
Ablation Techniques , Leydig Cells/pathology , Macrophages/pathology , Sertoli Cells/pathology , Spermatozoa/pathology , Testis/pathology , Animals , Cell Communication , Humans , Leydig Cells/drug effects , Leydig Cells/metabolism , Leydig Cells/radiation effects , Macrophages/drug effects , Macrophages/metabolism , Macrophages/radiation effects , Male , Models, Animal , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Sertoli Cells/radiation effects , Signal Transduction , Spermatogenesis , Spermatozoa/drug effects , Spermatozoa/metabolism , Spermatozoa/radiation effects , Testis/drug effects , Testis/metabolism , Testis/radiation effects
3.
Int J Androl ; 33(2): 413-24, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20059583

ABSTRACT

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like compounds are widely encountered toxic substances suspected of interfering with the endocrine systems of humans and wildlife, and of contributing to the loss of fertility. In this study, we determined the changes in testicular gene expression caused by in utero exposure to TCDD along with the intra-testicular testosterone levels, epididymal sperm reserves, daily sperm production (DSP) and testis histology. To this purpose, female pregnant Sprague-Dawley rats orally received TCDD (10, 100 or 200 ng/kg body weight) or vehicle at embryonic day 15, and the offspring was killed throughout development. Hepatic Cyp1a1 gene expression was measured in the offspring to confirm the exposure to TCDD. The gross histology of the testes and intra-testicular testosterone levels were normal among the studied groups. Sperm reserves were altered in 67-day-old rats of the TCDD-200 group, but not in 145-day-old animals or in the other TCDD-exposed groups. Nonetheless, fertility was not altered in males of the TCDD-200 group, and the F2 males generated had normal sperm reserves and DSP. Microarray analysis permitted the identification of eight differentially expressed genes in the 4-week-old testes of the TCDD-200 compared with that of the control group (cut-off value +/- 1.40), including the down-regulated chemokine Ccl5/Rantes. Inhibition of Ccl5/Rantes gene expression was observed throughout development in the TCDD-200 group, and at 67 and 145 days in the TCDD-100 group (animals of younger ages were not examined). Ccl5/Rantes gene expression was mostly confined in Leydig cells. F2 males generated from males of the TCDD-200 group had normal levels of Ccl5/Rantes in testis and Cyp1a1 in liver, which might indicate that Ccl5/Rantes is a marker of TCDD exposure in testis such as Cyp1a1 in liver. In conclusion, we demonstrated a decrease in Ccl5/Rantes RNA levels and a transitory decline in sperm reserves in the testes of rats of TCDD-dosed dams.


Subject(s)
Chemokine CCL5/genetics , Polychlorinated Dibenzodioxins/toxicity , Prenatal Exposure Delayed Effects/pathology , Reproduction/drug effects , Testis/drug effects , Animals , Cytochrome P-450 CYP1A1/metabolism , Down-Regulation , Female , Liver/enzymology , Male , Maternal Exposure , Pregnancy , Rats , Rats, Sprague-Dawley , Sperm Count , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...