Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(16): 28385-28400, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36299035

ABSTRACT

Detecting and recognizing different kinds of urban objects is an important problem, in particular, in autonomous driving. In this context, we studied the potential of Mueller matrix polarimetry for classifying a set of relevant real-world objects: vehicles, pedestrians, traffic signs, pavements, vegetation and tree trunks. We created a database with their experimental Mueller matrices measured at 1550 nm and trained two machine learning classifiers, support vector machine and artificial neural network, to classify new samples. The overall accuracy of over 95% achieved with this approach, with either models, reveals the potential of polarimetry, specially combined with other remote sensing techniques, to enhance object recognition.

2.
Nanomaterials (Basel) ; 12(12)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35745443

ABSTRACT

Metallic and bimetallic nanostructures have shown interesting chromatic and antibacterial properties, and they can be used in various applications. In this work, zinc (Zn) and iron (Fe) nanostructures were produced with different morphologies: (i) pure Zn; (ii) Zn-Fe nanoalloys; (iii) Zn-Fe nanolayers (Zn-Fe NLs); and (iv) Zn nanolayers combined with Fe nanoparticles (Zn NLs + Fe NPs). The aim was to produce components for food packaging materials with active and intelligent properties, including oxygen absorption capacity, chromatic properties, and antibacterial properties. Thus, the morphology, structure, and chemical composition of the samples were characterized and correlated with their oxidation, chromatic, and antibacterial properties. The results revealed a relevant reduction in the coating's opacity after oxidation varying from 100 to 10% depending on the morphology of the system. All coatings exhibited significant antibacterial activity against S. aureus, revealing a direct correlation with Zn content. The incorporation of Fe for all atomic arrangements showed a negative impact on the antibacterial effect against E. coli, decreasing to less than half the zone of inhibition for Zn-Fe NLs and Zn NLs + Fe NPs and suppressing the antibacterial effect for Zn-Fe alloy when compared with the pure Zn system.

3.
Nanoscale Res Lett ; 6(1): 309, 2011 Apr 07.
Article in English | MEDLINE | ID: mdl-21711818

ABSTRACT

In this study, transparent conducting nanocrystalline ZnO:Ga (GZO) films were deposited by dc magnetron sputtering at room temperature on polymers (and glass for comparison). Electrical resistivities of 8.8 × 10-4 and 2.2 × 10-3 Ω cm were obtained for films deposited on glass and polymers, respectively. The crack onset strain (COS) and the cohesive strength of the coatings were investigated by means of tensile testing. The COS is similar for different GZO coatings and occurs for nominal strains approx. 1%. The cohesive strength of coatings, which was evaluated from the initial part of the crack density evolution, was found to be between 1.3 and 1.4 GPa. For these calculations, a Young's modulus of 112 GPa was used, evaluated by nanoindentation.

4.
Sci Technol Adv Mater ; 11(4): 045006, 2010 Aug.
Article in English | MEDLINE | ID: mdl-27877355

ABSTRACT

Biochemical analysis of physiological fluids using, for example, lab-on-a-chip devices requires accurate mixing of two or more fluids. This mixing can be assisted by acoustic microagitation using a piezoelectric material, such as the ß-phase of poly(vinylidene fluoride) (ß-PVDF). If the analysis is performed using optical absorption spectroscopy and ß-PVDF is located in the optical path, the material and its conductive electrodes must be transparent. Moreover, if, to improve the transmission of the ultrasonic waves to the fluids, the piezoelectric transducer is placed inside the fluidic structures, its degradation must be assessed. In this paper, we report on the degradation properties of transparent conductive oxides, namely, indium tin oxide (ITO) and aluminum-doped zinc oxide, when they are used as electrodes for providing acoustic microagitation. The latter promotes mixing of chemicals involved in the measurement of uric acid concentration in physiological fluids. The results are compared with those for aluminum electrodes. We find that ß-PVDF samples with ITO electrodes do not degrade either with or without acoustic microagitation.

SELECTION OF CITATIONS
SEARCH DETAIL
...