Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 14: 1272734, 2023.
Article in English | MEDLINE | ID: mdl-37840735

ABSTRACT

Introduction: Staphylococcus capitis naturally colonizes the human skin but as an opportunistic pathogen, it can also cause biofilm-associated infections and bloodstream infections in newborns. Previously, we found that two strains from the subspecies S. capitis subsp. capitis produce yellow carotenoids despite the initial species description, reporting this subspecies as non-pigmented. In Staphylococcus aureus, the golden pigment staphyloxanthin is an important virulence factor, protecting cells against reactive oxygen species and modulating membrane fluidity. Methods: In this study, we used two pigmented (DSM 111179 and DSM 113836) and two non-pigmented S. capitis subsp. capitis strains (DSM 20326T and DSM 31028) to identify the pigment, determine conditions under which pigment-production occurs and investigate whether pigmented strains show increased resistance to ROS and temperature stress. Results: We found that the non-pigmented strains remained colorless regardless of the type of medium, whereas intensity of pigmentation in the two pigmented strains increased under low nutrient conditions and with longer incubation times. We were able to detect and identify staphyloxanthin and its derivates in the two pigmented strains but found that methanol cell extracts from all four strains showed ROS scavenging activity regardless of staphyloxanthin production. Increased survival to cold temperatures (-20°C) was detected in the two pigmented strains only after long-term storage compared to the non-pigmented strains. Conclusion: The identification of staphyloxanthin in S. capitis is of clinical relevance and could be used, in the same way as in S. aureus, as a possible target for anti-virulence drug design.

2.
Front Microbiol ; 14: 1233740, 2023.
Article in English | MEDLINE | ID: mdl-37547691

ABSTRACT

Melanins are complex pigments with various biological functions and potential applications in space exploration and biomedicine due to their radioprotective properties. Aspergillus niger, a fungus known for its high radiation resistance, is widely used in biotechnology and a candidate for melanin production. In this study, we investigated the production of fungal pyomelanin (PyoFun) in A. niger by inducing overproduction of the pigment using L-tyrosine in a recombinant ΔhmgA mutant strain (OS4.3). The PyoFun pigment was characterized using three spectroscopic methods, and its antioxidant properties were assessed using a DPPH-assay. Additionally, we evaluated the protective effect of PyoFun against non-ionizing radiation (monochromatic UV-C) and compared its efficacy to a synthetically produced control pyomelanin (PyoSyn). The results confirmed successful production of PyoFun in A. niger through inducible overproduction. Characterization using spectroscopic methods confirmed the presence of PyoFun, and the DPPH-assay demonstrated its strong antioxidant properties. Moreover, PyoFun exhibited a highly protective effect against radiation-induced stress, surpassing the protection provided by PyoSyn. The findings of this study suggest that PyoFun has significant potential as a biological shield against harmful radiation. Notably, PyoFun is synthesized extracellularly, differing it from other fungal melanins (such as L-DOPA- or DHN-melanin) that require cell lysis for pigment purification. This characteristic makes PyoFun a valuable resource for biotechnology, biomedicine, and the space industry. However, further research is needed to evaluate its protective effect in a dried form and against ionizing radiation.

3.
Microbiol Spectr ; 11(3): e0002823, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37078868

ABSTRACT

The search for the "Holy Grail" in clinical diagnostic microbiology-a reliable, accurate, low-cost, real-time, easy-to-use method-has brought up several methods with the potential to meet these criteria. One is Raman spectroscopy, an optical, nondestructive method based on the inelastic scattering of monochromatic light. The current study focuses on the possible use of Raman spectroscopy for identifying microbes causing severe, often life-threatening bloodstream infections. We included 305 microbial strains of 28 species acting as causative agents of bloodstream infections. Raman spectroscopy identified the strains from grown colonies, with 2.8% and 7% incorrectly identified strains using the support vector machine algorithm based on centered and uncentred principal-component analyses, respectively. We combined Raman spectroscopy with optical tweezers to speed up the process and captured and analyzed microbes directly from spiked human serum. The pilot study suggests that it is possible to capture individual microbial cells from human serum and characterize them by Raman spectroscopy with notable differences among different species. IMPORTANCE Bloodstream infections are among the most common causes of hospitalizations and are often life-threatening. To establish an effective therapy for a patient, the timely identification of the causative agent and characterization of its antimicrobial susceptibility and resistance profiles are essential. Therefore, our multidisciplinary team of microbiologists and physicists presents a method that reliably, rapidly, and inexpensively identifies pathogens causing bloodstream infections-Raman spectroscopy. We believe that it might become a valuable diagnostic tool in the future. Combined with optical trapping, it offers a new approach where the microorganisms are individually trapped in a noncontact way by optical tweezers and investigated by Raman spectroscopy directly in a liquid sample. Together with the automatic processing of measured Raman spectra and comparison with a database of microorganisms, it makes the whole identification process almost real time.


Subject(s)
Sepsis , Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , Pilot Projects , Optical Tweezers , Algorithms
4.
Biosensors (Basel) ; 13(2)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36831948

ABSTRACT

Efficient separation and sensitive identification of pathogenic bacterial strains is essential for a prosperous modern society, with direct applications in medical diagnostics, drug discovery, biodefense, and food safety. We developed a fast and reliable method for antibody-based selective immobilization of bacteria from suspension onto a gold-plated glass surface, followed by detection using strain-specific antibodies linked to gold nanoparticles decorated with a reporter molecule. The reporter molecules are subsequently detected by surface-enhanced Raman spectroscopy (SERS). Such a multi-functionalized nanoparticle is called a SERS-tag. The presented procedure uses widely accessible and cheap materials for manufacturing and functionalization of the nanoparticles and the immobilization surfaces. Here, we exemplify the use of the produced SERS-tags for sensitive single-cell detection of opportunistic pathogen Escherichia coli, and we demonstrate the selectivity of our method using two other bacterial strains, Staphylococcus aureus and Serratia marcescens, as negative controls. We believe that the described approach has a potential to inspire the development of novel medical diagnostic tools for rapid identification of bacterial pathogens.


Subject(s)
Metal Nanoparticles , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry , Gold/chemistry , Antibodies/chemistry , Staphylococcus aureus , Escherichia coli
5.
Biomed Opt Express ; 14(12): 6410-6421, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38420303

ABSTRACT

Pathogenic microbes contribute to several major global diseases that kill millions of people every year. Bloodstream infections caused by these microbes are associated with high morbidity and mortality rates, which are among the most common causes of hospitalizations. The search for the "Holy Grail" in clinical diagnostic microbiology, a reliable, accurate, low cost, real-time, and easy-to-use diagnostic method, is one of the essential issues in clinical practice. These very critical conditions can be met by Raman tweezers in combination with advanced analysis methods. Here, we present a proof-of-concept study based on Raman tweezers combined with spectral mixture analysis that allows for the identification of microbial strains directly from human blood serum without user intervention, thus eliminating the influence of a data analyst.

6.
Front Cell Infect Microbiol ; 12: 866463, 2022.
Article in English | MEDLINE | ID: mdl-35531343

ABSTRACT

Rapid and accurate identification of pathogens causing infections is one of the biggest challenges in medicine. Timely identification of causative agents and their antimicrobial resistance profile can significantly improve the management of infection, lower costs for healthcare, mitigate ever-growing antimicrobial resistance and in many cases, save lives. Raman spectroscopy was shown to be a useful-quick, non-invasive, and non-destructive -tool for identifying microbes from solid and liquid media. Modifications of Raman spectroscopy and/or pretreatment of samples allow single-cell analyses and identification of microbes from various samples. It was shown that those non-culture-based approaches could also detect antimicrobial resistance. Moreover, recent studies suggest that a combination of Raman spectroscopy with optical tweezers has the potential to identify microbes directly from human body fluids. This review aims to summarize recent advances in non-culture-based approaches of identification of microbes and their virulence factors, including antimicrobial resistance, using methods based on Raman spectroscopy in the context of possible use in the future point-of-care diagnostic process.


Subject(s)
Anti-Infective Agents , Spectrum Analysis, Raman , Humans , Single-Cell Analysis , Spectrum Analysis, Raman/methods , Virulence Factors
7.
Anal Chim Acta ; 1191: 339292, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35033248

ABSTRACT

Urinary tract infections belong to the most common infections in the world. Besides community-acquired infections, nosocomial infections pose a high risk especially for patients having indwelling catheters, undergoing urological surgeries or staying at hospital for prolonged time. They can be often complicated by antimicrobial resistance and/or biofilm formation. Therefore, a rapid diagnostic tool enabling timely identification of a causative agent and its susceptibility to antimicrobials is a need. Raman spectroscopy appears to be a suitable method that allows rapid differentiation among microbes and provides a space for further analyses, such as determination of capability of biofilm formation or antimicrobial susceptibility/resistance in tested strains. Our work here presents a possibility to differ among most common microbes causing urinary tract infections (belonging to 20 species). We tested 254 strains directly from colonies grown on Mueller-Hinton agar plates. The results show that it is possible to distinguish among the tested species using Raman spectroscopy, which proves its great potential for future use in clinical diagnostics. Moreover, we present here a pilot study of a real-time analysis and identification (in less than 10 min) of single microbial cells directly in urine employing optical tweezers combined with Raman spectroscopy.


Subject(s)
Spectrum Analysis, Raman , Urinary Tract Infections , Cell Differentiation , Humans , Pilot Projects , Urinary Tract Infections/diagnosis
8.
Future Microbiol ; 14: 509-517, 2019 04.
Article in English | MEDLINE | ID: mdl-31025881

ABSTRACT

Aim: Finding rapid, reliable diagnostic methods is a big challenge in clinical microbiology. Raman spectroscopy is an optical method used for multiple applications in scientific fields including microbiology. This work reports its potential in identifying biofilm positive strains of Candida parapsilosis and Staphylococcus epidermidis. Materials & methods: We tested 54 S. epidermidis strains (23 biofilm positive, 31 negative) and 51 C. parapsilosis strains (27 biofilm positive, 24 negative) from colonies on Mueller-Hinton agar plates, using Raman spectroscopy. Results: The accuracy was 98.9% for C. parapsilosis and 96.1% for S. epidermidis. Conclusion: The method showed great potential for identifying biofilm positive bacterial and yeast strains. We suggest that Raman spectroscopy might become a useful aid in clinical diagnostics.


Subject(s)
Biofilms/growth & development , Candida parapsilosis/metabolism , Spectrum Analysis, Raman/methods , Staphylococcus epidermidis/metabolism , Diagnostic Tests, Routine/methods , Humans
9.
Sci Rep ; 7(1): 14846, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29093473

ABSTRACT

Clinical treatment of the infections caused by various staphylococcal species differ depending on the actual cause of infection. Therefore, it is necessary to develop a fast and reliable method for identification of staphylococci. Raman spectroscopy is an optical method used in multiple scientific fields. Recent studies showed that the method has a potential for use in microbiological research, too. Our work here shows a possibility to identify staphylococci by Raman spectroscopy. We present a method that enables almost 100% successful identification of 16 of the clinically most important staphylococcal species directly from bacterial colonies grown on a Mueller-Hinton agar plate. We obtained characteristic Raman spectra of 277 staphylococcal strains belonging to 16 species from a 24-hour culture of each strain grown on the Mueller-Hinton agar plate using the Raman instrument. The results show that it is possible to distinguish among the tested species using Raman spectroscopy and therefore it has a great potential for use in routine clinical diagnostics.


Subject(s)
Spectrum Analysis, Raman/methods , Staphylococcus/isolation & purification , Agar , Diagnostic Tests, Routine , Fluorescence , Principal Component Analysis , Specimen Handling , Time Factors
10.
Future Microbiol ; 12: 881-890, 2017 08.
Article in English | MEDLINE | ID: mdl-28686040

ABSTRACT

AIM: Raman spectroscopy is an analytical method with a broad range of applications across multiple scientific fields. We report on a possibility to differentiate between two important Gram-positive species commonly found in clinical material - Staphylococcus aureus and Staphylococcus epidermidis - using this rapid noninvasive technique. MATERIALS & METHODS: For this, we tested 87 strains, 41 of S. aureus and 46 of S. epidermidis, directly from colonies grown on a Mueller-Hinton agar plate using Raman spectroscopy. DISCUSSION & CONCLUSION: The method paves a way for separation of these two species even on high number of samples and therefore, it can be potentially used in clinical diagnostics.


Subject(s)
Spectrum Analysis, Raman/methods , Staphylococcal Infections/diagnosis , Staphylococcus aureus/isolation & purification , Staphylococcus epidermidis/isolation & purification , Bacteriological Techniques , Colony Count, Microbial/methods , Czech Republic , Humans , Staphylococcus aureus/pathogenicity , Staphylococcus epidermidis/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...