Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(24): 39514-39527, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38041271

ABSTRACT

We describe the application of an AI-driven system to autonomously align complex x-ray-focusing mirror systems, including mirrors systems with variable focus spot sizes. The system has been developed and studied on a digital twin of nanofocusing X-ray beamlines, built using advanced optical simulation tools calibrated with wavefront sensing data collected at the beamline.We experimentally demonstrated that the system is reliably capable of positioning a focused beam on the sample, both by simulating the variation of a beamline with random perturbations due to typical changes in the light source and optical elements over time, and by conducting similar tests on an actual focusing mirror system.

2.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38117200

ABSTRACT

Next-generation synchrotron radiation facilities, such as the Advanced Photon Source Upgrade (APS-U), bring significant advancements in scientific research capabilities, necessitating advanced diagnostic tools. Central to these diagnostics are x-ray wavefront sensors, crucial for preserving beam properties, including brightness, coherence, and stability. This paper presents two novel wavefront sensor prototypes developed at the APS using the coded-mask-based technique. The first is a compact design tailored for specific conditions and adaptability to diverse beamline configurations. The second, an adjustable zoom version, offers flexibility to accommodate a wide range of beam conditions. Both prototypes underwent rigorous testing at the APS 28-ID-B beamline and demonstrated their effectiveness in both absolute wavefront sensing and relative metrology modes. These results highlight their promise in beamline diagnostics, potentially enabling applications such as beamline auto-alignment and real-time wavefront manipulation.

3.
Opt Express ; 31(13): 21264-21279, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37381230

ABSTRACT

A neural-network machine learning model is developed to control a bimorph adaptive mirror to achieve and preserve aberration-free coherent X-ray wavefronts at synchrotron radiation and free electron laser beamlines. The controller is trained on a mirror actuator response directly measured at a beamline with a real-time single-shot wavefront sensor, which uses a coded mask and wavelet-transform analysis. The system has been successfully tested on a bimorph deformable mirror at the 28-ID IDEA beamline of the Advanced Photon Source at Argonne National Laboratory. It achieved a response time of a few seconds and maintained desired wavefront shapes (e.g., a spherical wavefront) with sub-wavelength accuracy at 20 keV of X-ray energy. This result is significantly better than what can be obtained using a linear model of the mirror's response. The developed system has not been tailored to a specific mirror and can be applied, in principle, to different kinds of bending mechanisms and actuators.

4.
Nanomaterials (Basel) ; 13(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36678122

ABSTRACT

Copper-based chalcogenides have emerged as promising thermoelectric materials due to their high thermoelectric performance, tunable transport properties, earth abundance and low toxicity. We have presented an overview of experimental results and first-principal calculations investigating the thermoelectric properties of various polymorphs of Cu2SnS3 (CTS), Cu2ZnSnS4 (CZTS), and Cu2ZnSnSe4 (CZTSe) synthesized by high-energy reactive mechanical alloying (ball milling). Of particular interest are the disordered polymorphs of these materials, which exhibit phonon-glass-electron-crystal behavior-a decoupling of electron and phonon transport properties. The interplay of cationic disorder and nanostructuring leads to ultra-low thermal conductivities while enhancing electronic transport. These beneficial transport properties are the consequence of a plethora of features, including trap states, anharmonicity, rattling, and conductive surface states, both topologically trivial and non-trivial. Based on experimental results and computational methods, this report aims to elucidate the details of the electronic and lattice transport properties, thereby confirming that the higher thermoelectric (TE) performance of disordered polymorphs is essentially due to their complex crystallographic structures. In addition, we have presented synchrotron X-ray diffraction (SR-XRD) measurements and ab initio molecular dynamics (AIMD) simulations of the root-mean-square displacement (RMSD) in these materials, confirming anharmonicity and bond inhomogeneity for disordered polymorphs.

5.
J Synchrotron Radiat ; 27(Pt 5): 1108-1120, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32876585

ABSTRACT

The OASYS suite and its powerful integration features are used to implement a ray-tracing algorithm to accurately calculate the thermal load in any component of an undulator-based synchrotron beamline. This is achieved by sampling and converting the SRW source of a given energy into a Shadow source and using the latter code to ray trace the full beamline. The accuracy of the algorithm is proved by reconstructing the full undulator radiation distribution through an aperture and comparing the result with direct calculaton of the total power using SRW. The algorithm is particularly suited to analyze cases with complex beamline layouts and optical elements, such as crystals, multilayers, and compound refractive lenses. Examples of its use to calculate the power load on elements of two of the feature beamlines at the Advanced Photon Source Upgrade Project and a comparison of the results with analytical calculations are presented.

6.
Nanoscale ; 12(10): 5876-5887, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32104854

ABSTRACT

The presence of a capping agent (CTAB) on Pd nanoparticles produces a strong static disorder in the surface region. This results in a surface softening, which contributes to an overall increase in the Debye-Waller coefficient measured by X-ray powder diffraction. Molecular dynamics and density functional theory simulations show that the adsorption-induced surface disorder is strong enough to overcome the effects of nanoparticle size and shape.

7.
J Synchrotron Radiat ; 26(Pt 6): 1887-1901, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31721731

ABSTRACT

Different approaches to simulate a modern X-ray beamline are considered. Several methodologies with increasing complexity are applied to discuss the relevant parameters that quantify the beamline performance. Parameters such as flux, dimensions and intensity distribution of the focused beam, and coherence properties are obtained from simple analytical calculations to sophisticated computer simulations using ray-tracing and wave optics techniques. A latest-generation X-ray nanofocusing beamline for coherent applications (ID16A at the ESRF) has been chosen to study in detail the issues related to highly demagnifying synchrotron sources and exploiting the beam coherence. The performance of the beamline is studied for two storage rings: the old ESRF-1 (emittance 4000 pm) and the new ESRF-EBS (emittance 150 pm). In addition to traditional results in terms of flux and beam sizes, an innovative study on the partial coherence properties based on the propagation of coherent modes is presented. The different algorithms and methodologies are implemented in the software suite OASYS. These are discussed with emphasis placed upon the their benefits and limitations of each.

8.
J Synchrotron Radiat ; 24(Pt 3): 622-635, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28452754

ABSTRACT

A Monte Carlo algorithm has been developed to calculate the instrumental profile function of a powder diffraction synchrotron beamline. Realistic models of all optical elements are implemented in a ray-tracing software. The proposed approach and the emerging paradigm have been investigated and verified for several existing X-ray powder diffraction beamlines. The results, which can be extended to further facilities, show a new and general way of assessing the contribution of instrumental broadening to synchrotron radiation data, based on ab initio simulations.

9.
J Synchrotron Radiat ; 23(Pt 6): 1357-1367, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27787241

ABSTRACT

A new computer environment to perform simulations on synchrotron experiments has been designed. It performs ray-tracing simulations using the popular ray-tracing code SHADOW. With this new application one can define, in a very easy and elegant way, one or several optical systems (beamlines) and perform calculations of the propagation of the X-ray beam through it. Many complementary tools and supplementary calculations improve and extend the functionality of SHADOW to deal with complex optical system optimization, including compound optical elements, iterative calculations, some sample simulations, and implementing corrections for wave optics via a hybrid model.

10.
J Synchrotron Radiat ; 23(Pt 3): 665-78, 2016 05.
Article in English | MEDLINE | ID: mdl-27140145

ABSTRACT

An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper, with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.

11.
Sci Rep ; 6: 20712, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26860471

ABSTRACT

An iron-molybdenum alloy powder was extensively deformed by high energy milling, so to refine the bcc iron domain size to nanometer scale (~10 nm) and introduce a strong inhomogeneous strain. Both features contribute to comparable degree to the diffraction peak profile broadening, so that size and strain contributions can be easily separated by exploiting their different dependence on the diffraction angle. To assess the reliability of Line Profile Analysis, results were compared with evidence from other techniques, including scanning and transmission electron microscopy and X-ray small angle scattering. Results confirm the extent of the size broadening effect, whereas molecular dynamics simulations provide insight into the origin of the local atomic, inhomogeneous strain, pointing out the role of dislocations, domain boundaries and interactions among crystalline domains.

12.
Eur J Pharm Biopharm ; 91: 52-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25661587

ABSTRACT

Polymorphism and particle size distribution can impact the dissolution behaviour and, as a consequence, bioavailability and bioequivalence of poorly soluble drugs, such as Efavirenz (EFV). Nevertheless, these characteristics do not explain some failures occurring in in vitro assays and in in vivo studies. EFV belongs to Class II and the High Activity Antiretroviral Therapy (HAART) is considered the best choice in the treatment of adults and children. EFV is a drug that needs bioequivalence studies for generic compounds. In this work, six raw materials were analyzed and two of them were utilized with human volunteers (in vivo assays or bioequivalence). All the routine pharmaceutical controls of raw materials were approved; however, the reasons for the failure of the bioequivalence assay could not be explained with current knowledge. The aim of this work was to study microstructure, a solid-state property of current interest in the pharmaceutical area, in order to find an explanation for the dissolution and bioequivalence behaviour. The microstructure of EFV raw materials was studied by Whole Powder Pattern Modelling (WPPM) of X-ray powder diffraction data. Results for different EFV batches showed the biorelevance of the crystalline domain size, and a clear correlation with in vitro (dissolution tests) and in vivo assays (bioequivalence).


Subject(s)
Anti-HIV Agents/chemistry , Benzoxazines/chemistry , Models, Biological , Reverse Transcriptase Inhibitors/chemistry , Alkynes , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/therapeutic use , Benzoxazines/pharmacokinetics , Benzoxazines/therapeutic use , Biological Availability , Calorimetry, Differential Scanning , Cyclopropanes , Drug Contamination , Drug Liberation , Humans , Kinetics , Microscopy, Electron, Scanning , Molecular Structure , Particle Size , Powder Diffraction , Powders , Reproducibility of Results , Reverse Transcriptase Inhibitors/pharmacokinetics , Reverse Transcriptase Inhibitors/therapeutic use , Spectroscopy, Fourier Transform Infrared , Surface Properties , Synchrotrons , Therapeutic Equivalency
SELECTION OF CITATIONS
SEARCH DETAIL
...