Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Lett ; 26(12): 2122-2134, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37807844

ABSTRACT

The influence of aquatic resource-inputs on terrestrial communities is poorly understood, particularly in the tropics. We used stable isotope analysis of carbon and nitrogen to trace aquatic prey use and quantify the impact on trophic structure in 240 riparian arthropod communities in tropical and temperate forests. Riparian predators consumed more aquatic prey and were more trophically diverse in the tropics than temperate regions, indicating tropical riparian communities are both more reliant on and impacted by aquatic resources than temperate communities. This suggests they are more vulnerable to disruption of aquatic-terrestrial linkages. Although aquatic resource use declined strongly with distance from water, we observed no correlated change in trophic structure, suggesting trophic flexibility to changing resource availability within riparian predator communities in both tropical and temperate regions. Our findings highlight the importance of aquatic resources for riparian communities, especially in the tropics, but suggest distance from water is less important than resource diversity in maintaining terrestrial trophic structure.


Subject(s)
Arthropods , Food Chain , Animals , Forests , Carbon , Water , Ecosystem
2.
Ecology ; 101(8): e03074, 2020 08.
Article in English | MEDLINE | ID: mdl-32304220

ABSTRACT

The input of external energy and matter in recipient ecosystems can act as a bottom-up force that subsidizes consumers, with subsequent cascading effects throughout the food web. Depending on the amount of input, dietary preference, and the strength of trophic links, allochthonous resources generally play a stabilizing role on food webs. In this study, we investigated the stabilizing role of allochthonous aquatic resources on intraguild predation (IGP) and their consequences on shared prey in a terrestrial ecosystem. To this end, we manipulated the input of emergent aquatic insects (the allochthonous resources) from streams to land, and predation pressure by bats and birds (the top predators), in a multitrophic food web using an orthogonal exclusion experiment. Using stable isotope metrics, we found that bats, birds, and spiders (the mesopredators), were highly subsidized by emergent aquatic insects. Moreover, among terrestrial prey, top predators fed more on spiders than insects. As predicted, spiders were strongly affected by the presence of top predators when allochthonous resources were excluded. Consequently, in this scenario terrestrial insects were two times more abundant. Because spiders showed a higher preference for consuming aquatic resources, we suggest that nonconsumptive effects of spiders upon terrestrial insects could be mediating the strong response of those shared prey. We demonstrate that the input of allochthonous aquatic resources can play a fundamental role in stabilizing terrestrial trophic interactions and trophic cascades in riparian zones via decreasing predation pressure.


Subject(s)
Predatory Behavior , Spiders , Animals , Ecosystem , Food Chain , Insecta
3.
Oecologia ; 192(3): 745-753, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32016526

ABSTRACT

Biotic and abiotic factors may individually or interactively disrupt plant-pollinator interactions, influencing plant fitness. Although variations in temperature and precipitation are expected to modify the overall impact of predators on plant-pollinator interactions, few empirical studies have assessed if these weather conditions influence anti-predator behaviors and how this context-dependent response may cascade down to plant fitness. To answer this question, we manipulated predation risk (using artificial spiders) in different years to investigate how natural variation in temperature and precipitation may affect diversity (richness and composition) and behavioral (visitation) responses of flower-visiting insects to predation risk, and how these effects influence plant fitness. Our findings indicate that predation risk and an increase in precipitation independently reduced plant fitness (i.e., seed set) by decreasing flower visitation. Predation risk reduced pollinator visitation and richness, and altered species composition of pollinators. Additionally, an increase in precipitation was associated with lower flower visitation and pollinator richness but did not alter pollinator species composition. However, maximum daily temperature did not affect any component of the pollinator assemblage or plant fitness. Our results indicate that biotic and abiotic drivers have different impacts on pollinator behavior and diversity with consequences for plant fitness components. Even small variation in precipitation conditions promotes complex and substantial cascading effects on plants by affecting both pollinator communities and the outcome of plant-pollinator interactions. Tropical communities are expected to be highly susceptible to climatic changes, and these changes may have drastic consequences for biotic interactions in the tropics.


Subject(s)
Pollination , Predatory Behavior , Animals , Flowers , Insecta , Plants
4.
J Anim Ecol ; 85(2): 525-36, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26590144

ABSTRACT

The role of matter and energy flow across ecosystem boundaries for the subsidized consumer populations is well known. However, little is known on the effects of allochthonous subsidies on food web structure and trophic niche dimensions of consumers in the tropics. We excluded allochthonous aquatic insects from tropical streams using greenhouse-type exclosures to test the influence of aquatic allochthonous subsidies on the trophic structure and niche dimensions of terrestrial predators using stable isotope methods. In exclosure treatments, abundance and biomass of terrestrial predators, and biomass of phytophages decreased and increased, respectively. Vegetation-living predators were more responsive to allochthonous inputs than those living on the ground. Overall, lower availability of allochthonous inputs did not affect community-wide metrics and niche width of predators. However, the niche width of some spider families had very low overlap between treatments, and others had wider isotopic niches in the control than in the exclusion treatment. Most of the C and N in predators living in control stretches came from aquatic subsidies, and those predators living in the exclusion treatments switched their diets to terrestrial sources, showing a preference of predators for allochthonous subsidies. Our results suggest that allochthonous subsidies are also relevant to tropical fauna living upon vegetation. Moreover, allochthonous resources may amplify the niche dimension of certain predators or considerably change the trophic niche of others. Our study highlights the importance of including modern isotopic tools in elucidating the role of allochthonous resources on the patterns of trophic structure and niche dimensions of consumers from donor ecosystems.


Subject(s)
Food Chain , Forests , Insecta/physiology , Rivers , Animals , Brazil , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...