Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 130(22): 220403, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37327440

ABSTRACT

Close to the demixing transition, the degree of freedom associated with relative density fluctuations of a two-component Bose-Einstein condensate is described by a nondissipative Landau-Lifshitz equation. In the quasi-one-dimensional weakly immiscible case, this mapping surprisingly predicts that a dark-bright soliton should oscillate when subject to a constant force favoring separation of the two components. We propose a realistic experimental implementation of this phenomenon which we interpret as a spin-Josephson effect in the presence of a movable barrier.

2.
Phys Rev Lett ; 130(17): 173002, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37172254

ABSTRACT

We study the physics of a mobile impurity confined in a two-dimensional lattice, moving within a Bose-Hubbard bath at zero temperature. Exploiting the quantum Gutzwiller formalism, we develop a beyond-Fröhlich model of the bath-impurity interaction to describe the properties of the polaronic quasiparticle formed by the dressing of the impurity by quantum fluctuations of the bath. We find a stable and well-defined polaron throughout the entire phase diagram of the bath, except for the very low tunneling limit of the hard-core superfluid. The polaron properties are highly sensitive to the different universality classes of the quantum phase transition between the superfluid and Mott insulating phases, providing an unambiguous probe of correlations and collective modes in a quantum critical many-body environment.

3.
Phys Rev Lett ; 128(21): 210401, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35687467

ABSTRACT

We report on the experimental measurement of the dispersion relation of the density and spin collective excitation modes in an elongated two-component superfluid of ultracold bosonic atoms. Our parametric spectroscopic technique is based on the external modulation of the transverse confinement frequency, leading to the formation of density and spin Faraday waves. We show that the application of a coherent coupling between the two components reduces the phase symmetry and gives a finite mass to the spin modes.

4.
Phys Rev Lett ; 127(20): 203402, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34860048

ABSTRACT

We theoretically calculate and experimentally measure the beyond-mean-field (BMF) equation of state in a coherently coupled two-component Bose-Einstein condensate (BEC) in the regime where averaging of the interspecies and intraspecies coupling constants over the hyperfine composition of the single-particle dressed state predicts the exact cancellation of the two-body interaction. We show that with increasing the Rabi-coupling frequency Ω, the BMF energy density crosses over from the nonanalytic Lee-Huang-Yang scaling ∝n^{5/2} to an expansion in integer powers of density, where, in addition to a two-body BMF term ∝n^{2}sqrt[Ω], there emerges a repulsive three-body contribution ∝n^{3}/sqrt[Ω]. We experimentally evidence these two contributions, thanks to their different scaling with Ω, in the expansion of a Rabi-coupled two-component ^{39}K condensate in a waveguide. By studying the expansion with and without Rabi coupling, we reveal an important feature relevant for observing BMF effects and associated phenomena in mixtures with spin-asymmetric losses: Rabi coupling helps preserve the spin composition and thus prevents the system from drifting away from the point of the vanishing mean field.

5.
Phys Rev Lett ; 124(4): 045702, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32058751

ABSTRACT

Distinctive features of supersolids show up in their rotational properties. We calculate the moment of inertia of a harmonically trapped dipolar Bose-Einstein condensed gas as a function of the tunable scattering length parameter, providing the transition from the (fully) superfluid to the supersolid phase and eventually to an incoherent crystal of self-bound droplets. The transition from the superfluid to the supersolid phase is characterized by a jump in the moment of inertia, revealing its first order nature. In the case of elongated trapping in the plane of rotation, we show that the moment of inertia determines the value of the frequency of the scissors mode, which is significantly affected by the reduction of superfluidity in the supersolid phase. The case of an in-plane isotropic trapping is instead well suited to study the formation of quantized vortices, which are shown to be characterized, in the supersolid phase, by a sizeable deformed core, caused by the presence of the surrounding density peaks.

6.
Nature ; 574(7778): 382-385, 2019 10.
Article in English | MEDLINE | ID: mdl-31499510

ABSTRACT

Supersolids are exotic materials combining the frictionless flow of a superfluid with the crystal-like periodic density modulation of a solid. The supersolid phase of matter was predicted 50 years ago1-3 for solid helium4-8. Ultracold quantum gases have recently been made to exhibit periodic order typical of a crystal, owing to various types of controllable interaction9-13. A crucial feature of a D-dimensional supersolid is the occurrence of D + 1 gapless excitations, reflecting the Goldstone modes associated with the spontaneous breaking of two continuous symmetries: the breaking of phase invariance, corresponding to the locking of the phase of the atomic wave functions at the origin of superfluid phenomena, and the breaking of translational invariance due to the lattice structure of the system. Such modes have been the object of intense theoretical investigations1,14-18, but they have not yet been observed experimentally. Here we demonstrate supersolid symmetry breaking through the appearance of two distinct compressional oscillation modes in a harmonically trapped dipolar Bose-Einstein condensate, reflecting the gapless Goldstone excitations of the homogeneous system. We observe that the higher-frequency mode is associated with an oscillation of the periodicity of the emergent lattice and the lower-frequency mode characterizes the superfluid oscillations. This work also suggests the presence of two separate quantum phase transitions between the superfluid, supersolid and solid-like configurations.

7.
Phys Rev Lett ; 120(7): 073201, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29542935

ABSTRACT

We study the low-energy excitations of the Bose-Hubbard model in the strongly interacting superfluid phase using a Gutzwiller approach. We extract the single-particle and single-hole excitation amplitudes for each mode and report emergent mode-dependent particle-hole symmetry on specific arc-shaped lines in the phase diagram connecting the well-known Lorentz-invariant limits of the Bose-Hubbard model. By tracking the in-phase particle-hole symmetric oscillations of the order parameter, we provide an answer to the long-standing question about the fate of the pure amplitude Higgs mode away from the integer-density critical point. Furthermore, we point out that out-of-phase symmetric oscillations in the gapless Goldstone mode are responsible for a full suppression of the condensate density oscillations. Possible detection protocols are also discussed.

8.
Phys Rev Lett ; 118(8): 083602, 2017 Feb 24.
Article in English | MEDLINE | ID: mdl-28282175

ABSTRACT

We employ radio-frequency spectroscopy to investigate a polarized spin mixture of ultracold ^{6}Li atoms close to a broad Feshbach scattering resonance. Focusing on the regime of strong repulsive interactions, we observe well-defined coherent quasiparticles even for unitarity-limited interactions. We characterize the many-body system by extracting the key properties of repulsive Fermi polarons: the energy E_{+}, the effective mass m^{*}, the residue Z, and the decay rate Γ. Above a critical interaction, E_{+} is found to exceed the Fermi energy of the bath, while m^{*} diverges and even turns negative, thereby indicating that the repulsive Fermi liquid state becomes energetically and thermodynamically unstable.

9.
Phys Rev Lett ; 114(24): 245301, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-26196983

ABSTRACT

We show that the critical velocity of a superfluid flow through a penetrable barrier coincides with the onset of the analog black-hole lasing effect. This dynamical instability is triggered by modes resonating in an effective cavity formed by two horizons enclosing the barrier. The location of the horizons is set by v(x)=c(x), with v(x),c(x) being the local fluid velocity and sound speed, respectively. We compute the critical velocity analytically and show that it is univocally determined by the configuration of the horizons. In the limit of broad barriers, the continuous spectrum at the origin of the Hawking-like radiation and of the Landau energetic instability is recovered.

10.
Phys Rev Lett ; 100(24): 240406, 2008 Jun 20.
Article in English | MEDLINE | ID: mdl-18643559

ABSTRACT

Highly polarized mixtures of atomic Fermi gases constitute a novel Fermi liquid. We demonstrate how information on thermodynamic properties may be used to calculate quasiparticle scattering amplitudes even when the interaction is resonant and apply the results to evaluate the damping of the spin dipole mode. We estimate that under current experimental conditions the mode would be intermediate between the hydrodynamic and collisionless limits.

11.
Phys Rev Lett ; 100(7): 070401, 2008 Feb 22.
Article in English | MEDLINE | ID: mdl-18352526

ABSTRACT

We study the effect of the rotation on a harmonically trapped Fermi gas at zero temperature under the assumption that vortices are not formed. We show that at unitarity the rotation produces a phase separation between a nonrotating superfluid (S) core and a rigidly rotating normal (N) gas. The interface between the two phases is characterized by a density discontinuity n(N)/n(S)=0.85, independent of the angular velocity. The depletion of the superfluid and the angular momentum of the rotating configuration are calculated as a function of the angular velocity. The conditions of stability are also discussed and the critical angular velocity for the onset of a spontaneous quadrupole deformation of the interface is evaluated.

12.
Phys Rev Lett ; 98(18): 180402, 2007 May 04.
Article in English | MEDLINE | ID: mdl-17501546

ABSTRACT

We consider the problem of a single downward arrow atom in the presence of a Fermi sea of upward arrow atoms, in the vicinity of a Feshbach resonance. We calculate the chemical potential and the effective mass of the downward arrow atom using two simple approaches: a many-body variational wave function and a T-matrix approximation. These two methods lead to the same results and are in good agreement with existing quantum Monte Carlo calculations performed at unitarity and, in one dimension, with the known exact solution. Surprisingly, our results suggest that, even at unitarity, the effect of interactions is fairly weak and can be accurately described using single particle-hole excitations. We also consider the case of unequal masses.

13.
Phys Rev Lett ; 97(19): 190403, 2006 Nov 10.
Article in English | MEDLINE | ID: mdl-17155598

ABSTRACT

The polarization produced by the relative displacement of the potentials trapping two spin species of a dilute Fermi gas with N=N is calculated at unitarity by assuming phase separation between the superfluid and a polarized phase at zero temperature. Because of the energy cost associated with pair breaking, the dipole polarizability is strongly quenched and exhibits important deviations from the ideal gas behavior even for nonlinear displacements of the order of the size of the atomic cloud. The behavior in the presence of different trapping frequencies (monopole polarization) for the two spin species is also discussed. Our results suggest new experimental perspectives to explore the quantum phases of interacting Fermi gases.

14.
Phys Rev Lett ; 97(20): 200403, 2006 Nov 17.
Article in English | MEDLINE | ID: mdl-17155666

ABSTRACT

We study the Fermi gas at unitarity and at T=0 by assuming that, at high polarizations, it is a normal Fermi liquid composed of weakly interacting quasiparticles associated with the minority spin atoms. With a quantum Monte Carlo approach we calculate their effective mass and binding energy, as well as the full equation of state of the normal phase as a function of the concentration x=n downward arrow/n upward arrow of minority atoms. We predict a first order phase transition from normal to superfluid at x(c)=0.44 corresponding, in the presence of harmonic trapping, to a critical polarization P(c)=(N upward arrow - N downward arrow/(N upward arrow + N downward arrow)=77%. We calculate the radii and the density profiles in the trap and predict that the frequency of the spin dipole mode will be increased by a factor of 1.23 due to interactions.

15.
Phys Rev Lett ; 97(10): 100405, 2006 Sep 08.
Article in English | MEDLINE | ID: mdl-17025797

ABSTRACT

The pair correlation function of an expanding gas is investigated with an emphasis on the BEC-BCS crossover of a superfluid Fermi gas at zero temperature. At unitarity quantum Monte Carlo simulations reveal the occurrence of a sizable bunching effect due to interactions in the spin up-down channel which, at short distances, is larger than that exhibited by thermal bosons in the Hanbury-Brown-Twiss effect. We propose a local equilibrium ansatz for the pair correlation function which we predict will remain isotropic during the expansion even if the trapping potential is anisotropic, in contrast with the behavior of the density. The isotropy of the pair correlation function is an experimentally accessible signature, which makes a clear distinction with respect to the case of noninteracting gases and can be understood as a consequence of the violation of scaling.

16.
Phys Rev Lett ; 94(4): 040404, 2005 Feb 04.
Article in English | MEDLINE | ID: mdl-15783536

ABSTRACT

We study the dynamics of an atomic quantum dot, i.e., a single atom in a tight optical trap which is coupled to a superfluid reservoir via laser transitions. Quantum interference between the collisional interactions and the laser induced coupling results in a tunable dot-bath coupling, allowing an essentially complete decoupling from the environment. Quantum dots embedded in a 1D Luttinger liquid of cold bosonic atoms realize a spin-boson model with Ohmic coupling, which exhibits a dissipative phase transition and allows us to directly measure atomic Luttinger parameters.

17.
Phys Rev Lett ; 93(9): 090408, 2004 Aug 27.
Article in English | MEDLINE | ID: mdl-15447084

ABSTRACT

We discuss an integrable model of interacting fermions in one dimension that allows a complete description of the crossover from a BCS- to a Bose-like superfluid. This model bridges the Gaudin-Yang model of attractive spin 1/2 fermions to the Lieb-Liniger model of repulsive bosons. Using a geometric resonance in the one-dimensional scattering length, the inverse coupling constant varies from -infinity to +infinity while the system evolves from a BCS-like state through a Tonks-Girardeau gas to a weakly interacting Bose gas of dimers. We study the ground state energy, the elementary density and spin excitations, and the correlation functions. An experimental realization with cold atoms of such a one-dimensional BCS-BEC crossover is proposed.

18.
Phys Rev Lett ; 90(2): 020401, 2003 Jan 17.
Article in English | MEDLINE | ID: mdl-12570530

ABSTRACT

We investigate the physical properties of quasi-1D quantum gases of fermionic atoms confined in harmonic traps. Using the fact that for a homogeneous gas the low-energy properties are exactly described by a Luttinger model, we analyze the nature and manifestations of spin-charge separation, where in the case of atoms "spin" and "charge" refer to two internal atomic states and the atomic mass density, respectively. We discuss the necessary physical conditions and experimental limitations confronting possible experimental implementations.

19.
Phys Rev Lett ; 86(3): 377-80, 2001 Jan 15.
Article in English | MEDLINE | ID: mdl-11177835

ABSTRACT

The rotational motion of an interacting Bose-Einstein condensate confined by a harmonic trap is investigated by solving the hydrodynamic equations of superfluids, with the irrotationality constraint for the velocity field. We point out the occurrence of an overcritical branch where the system can rotate with angular velocity larger than the oscillator frequencies. We show that in the case of isotropic trapping the system exhibits a bifurcation from an axisymmetric to a triaxial configuration, as a consequence of the interatomic forces. The dynamical stability of the rotational motion with respect to the dipole and quadrupole oscillations is explicitly discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...