Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE J Biomed Health Inform ; 26(7): 3330-3341, 2022 07.
Article in English | MEDLINE | ID: mdl-34995200

ABSTRACT

Although respiratory failure is one of the primary causes of admission to intensive care, the importance placed on measurement of respiratory parameters is commonly overshadowed compared to cardiac parameters. With the increased demand for unobtrusive yet quantifiable respiratory monitoring, many technologies have been proposed recently. However, there are challenges to be addressed for such technologies to enable widespread use. In this work, we explore the feasibility of using load cell sensors embedded on a hospital bed for monitoring respiratory rate (RR) and tidal volume (TV). We propose a globalized machine learning (ML)-based algorithm for estimating TV without the requirement of subject-specific calibration or training. In a study of 15 healthy subjects performing respiratory tasks in four different postures, the outputs from four load cell channels and the reference spirometer were recorded simultaneously. A signal processing pipeline was implemented to extract features that capture respiratory movement and the respiratory effects on the cardiac (i.e., ballistocardiogram, BCG) signals. The proposed RR estimation algorithm achieved a root mean square error (RMSE) of 0.6 breaths per minute (brpm) against the ground truth RR from the spirometer. The TV estimation results demonstrated that combining all three axes of the low-frequency force signals and the BCG heartbeat features best quantifies the respiratory effects of TV. The model resulted in a correlation and RMSE between the estimated and true TV values of 0.85 and 0.23 L, respectively, in the posture independent model without electrocardiogram (ECG) signals. This study suggests that load cell sensors already existing in certain hospital beds can be used for convenient and continuous respiratory monitoring in general care settings.


Subject(s)
BCG Vaccine , Respiratory Rate , Algorithms , Hospitals , Humans , Signal Processing, Computer-Assisted , Tidal Volume
2.
IEEE J Biomed Health Inform ; 25(9): 3373-3383, 2021 09.
Article in English | MEDLINE | ID: mdl-33729962

ABSTRACT

The ballistocardiogram (BCG), a cardiac vibration signal, has been widely investigated for continuous monitoring of heart rate (HR). Among BCG sensing modalities, a hospital bed with multi-channel load-cells could provide robust HR estimation in hospital setups. In this work, we present a novel array processing technique to improve the existing HR estimation algorithm by optimizing the fusion of information from multiple channels. The array processing includes a Gaussian curve to weight the joint probability according to the reference value obtained from the previous inter-beat-interval (IBI) estimations. Additionally, the probability density functions were selected and combined according to their reliability measured by q-values. We demonstrate that this array processing significantly reduces the HR estimation error compared to state-of-the-art multi-channel heartbeat detection algorithms in the existing literature. In the best case, the average mean absolute error (MAE) of 1.76 bpm in the supine position was achieved compared to 2.68 bpm and 1.91 bpm for two state-of-the-art methods from the existing literature. Moreover, the lowest error was found in the supine posture (1.76 bpm) and the highest in the lateral posture (3.03 bpm), thus elucidating the postural effects on HR estimation. The IBI estimation capability was also evaluated, with a MAE of 16.66 ms and confidence interval (95%) of 38.98 ms. The results demonstrate that improved HR estimation can be obtained for a bed-based BCG system with the multi-channel data acquisition and processing approach described in this work.


Subject(s)
Ballistocardiography , Algorithms , Heart Rate , Hospitals , Reproducibility of Results , Signal Processing, Computer-Assisted
3.
ILAR J ; 49(1): 54-65, 2008.
Article in English | MEDLINE | ID: mdl-18172333

ABSTRACT

Positron emission tomography (PET) is well established as an important research and clinical molecular imaging modality. Although the size differences between humans and rodents create formidable challenges for the application of PET imaging in small animals, advances in technology over the past several years have enabled the translation of this imaging modality to preclinical applications. In this article we discuss the basic principles of PET instrumentation and radiopharmaceuticals, and examine the key factors responsible for the qualitative and quantitative imaging capabilities of small animal PET systems. We describe the criteria that PET imaging agents must meet, and provide examples of small animal PET imaging to give the reader a broad perspective on the capabilities and limitations of this evolving technology. A crucial driver for future advances in PET imaging is the availability of molecular imaging probes labeled with positron-emitting radionuclides. The strong translational science potential of small animal and human PET holds great promise to dramatically advance our understanding of human disease. The assessment of molecular and functional processes using imaging agents as either direct or surrogate biomarkers will ultimately enable the characterization of disease expression in individual patients and thus facilitate tailored treatment plans that can be monitored for their effectiveness in each subject.


Subject(s)
Models, Animal , Positron-Emission Tomography/methods , Animals , Humans , Models, Theoretical , Positron-Emission Tomography/instrumentation , Radiopharmaceuticals , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...