Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Biomolecules ; 10(1)2019 12 28.
Article in English | MEDLINE | ID: mdl-31905668

ABSTRACT

Degenerative cartilage pathologies are nowadays a major problem for the world population. Factors such as age, genetics or obesity can predispose people to suffer from articular cartilage degeneration, which involves severe pain, loss of mobility and consequently, a loss of quality of life. Current strategies in medicine are focused on the partial or total replacement of affected joints, physiotherapy and analgesics that do not address the underlying pathology. In an attempt to find an alternative therapy to restore or repair articular cartilage functions, the use of bioengineered tissues is proposed. In this study we present a three-dimensional (3D) bioengineered platform combining a 3D printed polycaprolactone (PCL) macrostructure with RAD16-I, a soft nanofibrous self-assembling peptide, as a suitable microenvironment for human mesenchymal stem cells' (hMSC) proliferation and differentiation into chondrocytes. This 3D bioengineered platform allows for long-term hMSC culture resulting in chondrogenic differentiation and has mechanical properties resembling native articular cartilage. These promising results suggest that this approach could be potentially used in articular cartilage repair and regeneration.


Subject(s)
Cartilage, Articular/physiology , Printing, Three-Dimensional , Regeneration , Regenerative Medicine/instrumentation , Tissue Engineering , Cartilage, Articular/cytology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism
3.
J Vis Exp ; (136)2018 06 13.
Article in English | MEDLINE | ID: mdl-29985312

ABSTRACT

A useful technique for culturing cells in a self-assembling nanofiber three-dimensional (3D) scaffold is described. This culture system recreates an environment that closely mimics the structural features of non-polarized tissue. Furthermore, the particular intrinsic nanofiber structure of the scaffold makes it transparent to visual light, which allows for easy visualization of the sample under microscopy. This advantage was largely used to study cell migration, organization, proliferation, and differentiation and thus any development of their particular cellular function by staining with specific dyes or probes. Furthermore, in this work, we describe the good performance of this system to easily study the redifferentiation of expanded human articular chondrocytes into cartilaginous tissue. Cells were encapsulated into self-assembling peptide scaffolds and cultured under specific conditions to promote chondrogenesis. Three-dimensional cultures showed good viability during the 4 weeks of the experiment. As expected, samples cultured with chondrogenic inducers (compared to non-induced controls) stained strongly positive for toluidine blue (which stains glycosaminoglycans (GAGs) that are highly present in cartilage extracellular matrix) and expressed specific molecular markers, including collagen type I, II and X, according to Western Blot analysis. This protocol is easy to perform and can be used at research laboratories, industries and for educational purposes in laboratory courses.


Subject(s)
Cell Culture Techniques/methods , Nanostructures/chemistry , Peptides/metabolism , Tissue Scaffolds/chemistry , Animals , Cell Count , Cells, Cultured , Humans
4.
PLoS One ; 11(6): e0157603, 2016.
Article in English | MEDLINE | ID: mdl-27315119

ABSTRACT

Cartilage injury and degenerative tissue progression remain poorly understood by the medical community. Therefore, various tissue engineering strategies aim to recover areas of damaged cartilage by using non-traditional approaches. To this end, the use of biomimetic scaffolds for recreating the complex in vivo cartilage microenvironment has become of increasing interest in the field. In the present study, we report the development of two novel biomaterials for cartilage tissue engineering (CTE) with bioactive motifs, aiming to emulate the native cartilage extracellular matrix (ECM). We employed a simple mixture of the self-assembling peptide RAD16-I with either Chondroitin Sulfate (CS) or Decorin molecules, taking advantage of the versatility of RAD16-I. After evaluating the structural stability of the bi-component scaffolds at a physiological pH, we characterized these materials using two different in vitro assessments: re-differentiation of human articular chondrocytes (AC) and induction of human adipose derived stem cells (ADSC) to a chondrogenic commitment. Interestingly, differences in cellular morphology and viability were observed between cell types and culture conditions (control and chondrogenic). In addition, both cell types underwent a chondrogenic commitment under inductive media conditions, and this did not occur under control conditions. Remarkably, the synthesis of important ECM constituents of mature cartilage, such as type II collagen and proteoglycans, was confirmed by gene and protein expression analyses and toluidine blue staining. Furthermore, the viscoelastic behavior of ADSC constructs after 4 weeks of culture was more similar to that of native articular cartilage than to that of AC constructs. Altogether, this comparative study between two cell types demonstrates the versatility of our novel biomaterials and suggests a potential 3D culture system suitable for promoting chondrogenic differentiation.


Subject(s)
Cartilage, Articular/metabolism , Chondroitin Sulfates/therapeutic use , Decorin/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , Cartilage, Articular/growth & development , Cartilage, Articular/injuries , Cell Culture Techniques , Cell Differentiation/drug effects , Cellular Microenvironment/drug effects , Chondrocytes/drug effects , Chondrogenesis/drug effects , Chondroitin Sulfates/chemistry , Decorin/therapeutic use , Extracellular Matrix/drug effects , Humans , Oligopeptides/metabolism , Oligopeptides/therapeutic use
5.
J Biomed Mater Res A ; 104(7): 1694-706, 2016 07.
Article in English | MEDLINE | ID: mdl-26939919

ABSTRACT

The use of chondrocytes in cell-based therapies for cartilage lesions are limited by quantity and, therefore, require an in vitro expansion. As monolayer culture leads to de-differentiation, different culture techniques are currently under development to recover chondrocyte phenotype after cell expansion. In the present work, we studied the capacity of the bimolecular heparin-based self-assembling peptide scaffold (RAD16-I) as a three-dimensional (3D) culture system to foster reestablishment of chondrogenic phenotype of de-differentiated human Articular Chondrocytes (AC). The culture was performed in a serum-free medium under control and chondrogenic induction and good viability results were observed after 4 weeks of culture in both conditions. Cells changed their morphology to a more elongated shape and established a cellular network that induced the condensation of the constructs in the case of chondrogenic medium, leading to a compacted structure with improved mechanical properties. Specific extracellular matrix (ECM) proteins of mature cartilage, such as collagen type II and aggrecan were up-regulated under chondrogenic medium and significantly enhanced with the presence of heparin in the scaffold. 3D constructs became highly stained with toluidine blue dye after 4 weeks of culture, indicating the presence of synthetized proteoglycans (PGs) by the cells. Interestingly, the full viscoelastic behavior was closely related to that found in chicken native cartilage. Altogether, the results suggest that the 3D culture model described can help de-differentiated human chondrocytes to recover its cartilage phenotype. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1694-1706, 2016.


Subject(s)
Cell Dedifferentiation/drug effects , Chondrocytes/cytology , Chondrogenesis/drug effects , Heparin/pharmacology , Peptides/pharmacology , Tissue Scaffolds/chemistry , Biomarkers/metabolism , Cartilage, Articular/cytology , Cell Dedifferentiation/genetics , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Cells, Cultured , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrogenesis/genetics , Gene Expression Regulation/drug effects , Humans , Hydrogels/pharmacology , Materials Testing , Phenotype , Proteoglycans/metabolism
6.
Tissue Eng Part C Methods ; 22(2): 113-124, 2016 02.
Article in English | MEDLINE | ID: mdl-26741987

ABSTRACT

The prolonged ischemia after myocardial infarction leads to a high degree of cardiomyocyte death, which leads to a reduction of normal heart function. Valuable lessons can be learnt from human myocardium and stem cell biology that would help scientists to develop new, effective, safe, and affordable regenerative therapies. In vivo models are of high interest, but their high complexity limits the possibility to analyze specific factors. In vitro models permit analyzing specific factors of tissue physiology or pathophysiology providing accurate approaches that may guide the creation of three-dimensional (3D) engineered cell aggregates. These systems provide a simplistic way to examine individual factors as compared to animal models, and better mimic the reality than 2D models. In this sense, the objective of this work is to better understand the behavior of a human mesenchymal stem cell-like cell line (subcutaneous adipose tissue-derived progenitor cells [subATDPCs], susceptible to be used in cell therapies) when they are embedded in the 3D environment provided by RAD16-I self-assembling peptide (SAP). Specifically, we study the effect in subATDPCs viability, morphology, proliferation, and protein and gene expression of matrix composition (i.e., RGD motif and heparin polysaccharide modifications) in RAD16-I matrix under different media conditions. Results demonstrated that the 3D environment provided by RAD16-I SAP is able to maintain subATDPCs in this new milieu and at the same time its cardiac commitment. Additionally, it has been observed that chemical induction can induce upregulation of cardiac markers, such as TBX5, MEF2C, ACTN1, and GJA1. Therefore, we propose this 3D model as a promising platform to analyze the effect of specific cues that can help improve cell performance for future cell therapy.

7.
Materials (Basel) ; 9(6)2016 Jun 17.
Article in English | MEDLINE | ID: mdl-28773609

ABSTRACT

Adult articular cartilage has a limited capacity for growth and regeneration and, with injury, new cellular or biomaterial-based therapeutic platforms are required to promote repair. Tissue engineering aims to produce cartilage-like tissues that recreate the complex mechanical and biological properties found in vivo. In this study, a unique composite scaffold was developed by infiltrating a three-dimensional (3D) woven microfiber poly (ε-caprolactone) (PCL) scaffold with the RAD16-I self-assembling nanofibers to obtain multi-scale functional and biomimetic tissue-engineered constructs. The scaffold was seeded with expanded dedifferentiated human articular chondrocytes and cultured for four weeks in control and chondrogenic growth conditions. The composite constructs were compared to control constructs obtained by culturing cells with 3D woven PCL scaffolds or RAD16-I independently. High viability and homogeneous cell distribution were observed in all three scaffolds used during the term of the culture. Moreover, gene and protein expression profiles revealed that chondrogenic markers were favored in the presence of RAD16-I peptide (PCL/RAD composite or alone) under chondrogenic induction conditions. Further, constructs displayed positive staining for toluidine blue, indicating the presence of synthesized proteoglycans. Finally, mechanical testing showed that constructs containing the PCL scaffold maintained the initial shape and viscoelastic behavior throughout the culture period, while constructs with RAD16-I scaffold alone contracted during culture time into a stiffer and compacted structure. Altogether, these results suggest that this new composite scaffold provides important mechanical requirements for a cartilage replacement, while providing a biomimetic microenvironment to re-establish the chondrogenic phenotype of human expanded articular chondrocytes.

8.
Acta Biomater ; 16: 35-48, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25595471

ABSTRACT

One major goal of tissue engineering is to develop new biomaterials that are similar structurally and functionally to the extracellular matrix (ECM) to mimic natural cell environments. Recently, different types of biomaterials have been developed for tissue engineering applications. Among them, self-assembling peptides are attractive candidates to create artificial cellular niches, because their nanoscale network and biomechanical properties are similar to those of the natural ECM. Here, we describe the development of a new biomaterial for tissue engineering composed by a simple combination of the self-assembling peptide RAD16-I and heparin sodium salt. As a consequence of the presence of heparin moieties the material acquired enhances the capacity of specific binding and release of growth factors (GFs) with heparin binding affinity such as VEGF165. Promising results were obtained in the vascular tissue engineering area, where the new composite material supported the development of tubular-like structures within a three dimensional (3D) culture model. Moreover, the new scaffold enhances the cell survival and chondrogenic commitment of adipose-derived stem cells (ADSC). Interestingly, the expression of specific markers of mature cartilage tissue including collagen type II was confirmed by western blot and real-time PCR. Furthermore, positive staining for proteoglycans (PGs) indicated the synthesis of cartilage tissue ECM components. Finally, the constructs did not mineralize and exhibited mechanical properties of a tissue undergoing chondrogenesis. Altogether, these results suggest that the new composite is a promising "easy to prepare" material for different reparative and regenerative applications.


Subject(s)
Biocompatible Materials/pharmacology , Heparin/pharmacology , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Tissue Engineering/methods , Cell Culture Techniques , Cell Differentiation/drug effects , Chondrogenesis/drug effects , Drug Delivery Systems , Gene Expression Regulation/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Intercellular Signaling Peptides and Proteins/pharmacology , Neovascularization, Physiologic/drug effects , Oligopeptides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...