Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Gels ; 9(4)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37102884

ABSTRACT

Indium tin oxide (ITO) aerogels offer a combination of high surface area, porosity and conductive properties and could therefore be a promising material for electrodes in the fields of batteries, solar cells and fuel cells, as well as for optoelectronic applications. In this study, ITO aerogels were synthesized via two different approaches, followed by critical point drying (CPD) with liquid CO2. During the nonaqueous one-pot sol-gel synthesis in benzylamine (BnNH2), the ITO nanoparticles arranged to form a gel, which could be directly processed into an aerogel via solvent exchange, followed by CPD. Alternatively, for the analogous nonaqueous sol-gel synthesis in benzyl alcohol (BnOH), ITO nanoparticles were obtained and assembled into macroscopic aerogels with centimeter dimensions by controlled destabilization of a concentrated dispersion and CPD. As-synthesized ITO aerogels showed low electrical conductivities, but an improvement of two to three orders of magnitude was achieved by annealing, resulting in an electrical resistivity of 64.5-1.6 kΩ·cm. Annealing in a N2 atmosphere led to an even lower resistivity of 0.2-0.6 kΩ·cm. Concurrently, the BET surface area decreased from 106.2 to 55.6 m2/g with increasing annealing temperature. In essence, both synthesis strategies resulted in aerogels with attractive properties, showing great potential for many applications in energy storage and for optoelectronic devices.

2.
Nanoscale Horiz ; 2(1): 6-30, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-32260673

ABSTRACT

Colloidal nanocrystals are extensively used as building blocks in nanoscience, and amazing results have been achieved in assembling them into ordered, close-packed structures. But in spite of great efforts, the size of these structures is typically restricted to a few micrometers, and it is very hard to extend them into the macroscopic world. In comparison, aerogels are macroscopic materials, highly porous, disordered, ultralight and with immense surface areas. With these distinctive characteristics, they are entirely contrary to common nanoparticle assemblies such as superlattices or nanocrystal solids, and therefore cover a different range of applications. While aerogels are traditionally synthesized by molecular routes based on aqueous sol-gel chemistry, in the last few years the gelation of nanoparticle dispersions became a viable alternative to improve the crystallinity and to widen the structural, morphological and compositional complexity of aerogels. In this Review, the different approaches to inorganic non-siliceous and non-carbon aerogels are addressed. We start our discussion with wet chemical routes involving molecular precursors, followed by processing methods using nanoparticles as building blocks. A unique feature of many of these routes is the fact that a macroscopic, often monolithic body is produced by pure self-assembly of nanosized colloids without the need for any templates.

3.
Langmuir ; 33(1): 280-287, 2017 01 10.
Article in English | MEDLINE | ID: mdl-27977210

ABSTRACT

Although aerogels prepared by the colloidal assembly of nanoparticles are a rapidly emerging class of highly porous and low-density materials, their ambient dried counterparts, namely xerogels, have hardly been explored. Here we report the use of nanoparticle-based BaTiO3 xerogels as green bodies, which provide a versatile route to ceramic materials under the minimization of organic additives with a significant reduction of the calcination temperature compared to that of conventional powder sintering. The structural changes of the xerogels are investigated during ambient drying by carefully analyzing the microstructure at different drying stages. For this purpose, the shrinkage was arrested by a supercritical drying step under full preservation of the intermediate microstructure, giving unprecedented insight into the structural changes during ambient drying of a nanoparticle-based gel. In a first step, the large macropores shrink because of capillary forces, followed by the collapse of residual mesopores until a dense xerogel is obtained. The whole process is accompanied by a volume shrinkage of 97% and a drop in surface area from 300 to 220 m2 g-1. Finally, the xerogels are sintered, causing another shrinkage of up to 8% with a slight increase in the average pore and crystal sizes. At temperatures higher than 700 °C, an unexpected phase transition to BaTi2O5 is observed.

4.
Nanoscale ; 8(29): 14074-7, 2016 Aug 07.
Article in English | MEDLINE | ID: mdl-27389477

ABSTRACT

Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.

5.
Dalton Trans ; 45(29): 11616-9, 2016 Aug 07.
Article in English | MEDLINE | ID: mdl-27169877

ABSTRACT

We present for the first time the synthesis of transition metal nitride aerogels, specifically Cu3N aerogels by destabilizing colloidal Cu3N nanoparticles into gels using controlled heat treatment. The resulting aerogels consist of interconnected three-dimensional networks with ultrasmall-sized nanoparticle bridges of a surface area of 381 m(2) g(-1) and only 5% relative density.

6.
ACS Nano ; 10(2): 2467-75, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26756944

ABSTRACT

The preparation of macroscopic materials from two-dimensional nanostructures represents a great challenge. Restacking and random aggregation to dense structures during processing prevents the preservation of the two-dimensional morphology of the nanobuilding blocks in the final body. Here we present a facile solution route to ultrathin, crystalline Y2O3 nanosheets, which can be assembled into a 3D network by a simple centrifugation-induced gelation method. The wet gels are converted into aerogel monoliths of macroscopic dimensions via supercritical drying. The as-prepared, fully crystalline Y2O3 aerogels show high surface areas of up to 445 m(2)/g and a very low density of 0.15 g/cm(3), which is only 3% of the bulk density of Y2O3. By doping and co-doping the Y2O3 nanosheets with Eu(3+) and Tb(3+), we successfully fabricated luminescent aerogel monoliths with tunable color emissions from red to green under UV excitation. Moreover, the as-prepared gels and aerogels exhibit excellent adsorption capacities for organic dyes in water without losing their structural integrity. For methyl blue we measured an unmatched adsorption capacity of 8080 mg/g. Finally, the deposition of gold nanoparticles on the nanosheets gave access to Y2O3-Au nanocomposite aerogels, proving that this approach may be used for the synthesis of catalytically active materials. The broad range of properties including low density, high porosity, and large surface area in combination with tunable photoluminescence makes these Y2O3 aerogels a truly multifunctional material with potential applications in optoelectronics, wastewater treatment, and catalysis.

7.
Chempluschem ; 81(9): 935-940, 2016 Sep.
Article in English | MEDLINE | ID: mdl-31968792

ABSTRACT

WO3 photoanodes with remarkable photocurrent densities are presented. These photoanodes were prepared from three different commercially available WO3 nanopowders. Doctor blading of the nanopowders followed by a short annealing in air led to nanostructured films. The best photoanode showed a photocurrent density of 3.5 mA cm-2 at 1.23 V vs. RHE in 1 m CH3 SO3 H under AM 1.5 G illumination (100 mW cm-2 ), surpassing values reported so far for bare WO3 photoanodes. The study also showed that the photocurrent was strongly dependent on the electrolyte, indicating oxidation of the electrolyte rather than of water. Oxygen evolution measurements performed in different electrolytes revealed that the amounts of oxygen were highly dependent on the electrolyte. By comparing the photocurrent values in the different electrolytes with the amount of evolving oxygen, it was found that the electrolyte producing the highest photocurrent was the electrolyte with the lowest oxygen evolution. Stability measurements showed that the more oxygen is produced, the less stable is the photoanode. These results clearly underline the difficulty to correlate the photocurrent values with oxygen evolution, drawing the attention to one of the major limitations of photoelectrochemical water splitting.

8.
Nanoscale ; 7(33): 13898-906, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26220269

ABSTRACT

TiO2 has been considered as a promising anode material for lithium ion batteries. However, its poor rate capability originating from the intrinsically low lithium ion diffusivity and its poor electronic conductivity hampers putting such an application into practice. Both issues can be addressed by nanostructure engineering and conductive surface coating. Herein, we report a template-assisted synthesis of micron sized TiO2 fibers consisting of a mesoporous network of anatase nanoparticles of about 7.5 nm and coated by N doped carbon. In a first step, an amorphous layer of TiO2 was deposited on cobalt silicate nanobelts and subsequently transformed into crystalline anatase nanoparticles by hydrothermal treatment. The N doped carbon coating was realized by in situ polymerization of dopamine on the crystalline TiO2 followed by annealing under N2. After removal of the template, we obtained the final mesoporous TiO2 fibers@N doped carbon composite. Electrochemical tests revealed that the composite electrode exhibited excellent electrochemical properties in terms of specific capacity, rate performance and long term stability.

9.
Chem Sci ; 6(12): 6908-6915, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-28757979

ABSTRACT

During the past decade, tremendous attention has been given to the development of new electrode materials with high capacity to meet the requirements of electrode materials with high energy density in lithium ion batteries. Very recently, cobalt silicate has been proposed as a new type of high capacity anode material for lithium ion batteries. However, the bulky cobalt silicate demonstrates limited electrochemical performance. Nanostructure engineering and carbon coating represent two promising strategies to improve the electrochemical performance of electrode materials. Herein, we developed a template method for the synthesis of amorphous cobalt silicate nanobelts which can be coated with carbon through the deposition and thermal decomposition of phenol formaldehyde resin. Tested as an anode material, the amorphous cobalt silicate nanobelts@carbon composites exhibit a reversible high capacity of 745 mA h g-1 at a current density of 100 mA g-1, and a long life span of up to 1000 cycles with a stable capacity retention of 480 mA h g-1 at a current density of 500 mA g-1. The outstanding electrochemical performance of the composites indicates their high potential as an anode material for lithium ion batteries. The results here are expected to stimulate further research into transition metal silicate nanostructures for lithium ion battery applications.

10.
Chem Commun (Camb) ; 50(86): 13138-41, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25229075

ABSTRACT

We present the assembly of preformed antimony doped tin oxide nanobuilding blocks into centimeter sized aerogels with surface areas exceeding 340 m(2) g(-1). After calcination, the resistivity of the aerogels was decreased by 4 orders of magnitude to a few kΩ cm, with the primary conducting structures measuring only a few nanometers.

11.
Angew Chem Int Ed Engl ; 53(26): 6823-6, 2014 Jun 23.
Article in English | MEDLINE | ID: mdl-24853124

ABSTRACT

Aerogels with their low density and high surface area are fascinating materials. However, their advantageous morphology is still far from being fully exploited owing to their limited compositional variety and low crystallinity. Replacing the sol-gel process by a particle-based assembly route is a powerful alternative to expand the accessible functionalities of aerogels. A strategy is presented for the controlled destabilization of concentrated dispersions of BaTiO3 nanoparticles, resulting in the assembly of the fully crystalline building blocks into cylindrically shaped monolithic gels, thereby combining the inherent properties of ternary oxides with the highly porous microstructure of aerogels. The obtained aerogels showed an unprecedentedly high surface area of over 300 m(2) g(-1).

12.
ACS Nano ; 6(8): 7077-83, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22747340

ABSTRACT

Dopant atoms are used to tailor the properties of materials. However, whether the desired effect is achieved through selective doping depends on the dopant distribution within the host material. The clustering of dopant atoms can have a deleterious effect on the achievable properties because a two-phase material is obtained instead of a homogeneous material. Thus, the examination of dopant fluctuations in nanodevices requires a reliable method to chemically probe individual atoms within the host material. This is particularly challenging in the case of functionalized nanoparticles where the characteristic length scale of the particles demands the use of a high-spatial-resolution and high-sensitivity technique. Here we demonstrate a chemically sensitive atomic resolution imaging technique which delivers direct site-specific information on the dopant distribution in nanoparticles. We employ electron energy-loss spectroscopy imaging in a scanning transmission electron microscope combined with multivariate statistical analysis to map the distribution of Ba dopant atoms in SrTiO(3) nanoparticles. Our results provide direct evidence for clustering of the Ba dopants in the SrTiO(3) nanoparticles outlining a possible explanation for the presence of polar nanoregions in the Ba:SrTiO(3) system. The results we present constitute the first example of site-specific atomic resolution spectroscopy of foreign atoms in doped nanoparticles and suggest a general strategy to ascertain the spatial distribution of impurity atoms in nanocrystals and hence improve the performance of nanoparticle-based devices.


Subject(s)
Barium/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Nanostructures/chemistry , Nanostructures/ultrastructure , Titanium/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
13.
Phys Rev Lett ; 107(22): 225503, 2011 Nov 25.
Article in English | MEDLINE | ID: mdl-22182033

ABSTRACT

The application of focused ion beam (FIB) nanotomography and Rutherford backscattering spectroscopy (RBS) to dealloyed platinum-aluminum thin films allows for an in-depth analysis of the dominating physical mechanisms of nanoporosity formation during the dealloying process. The porosity formation due to the dissolution of the less noble aluminum in the alloy is treated as result of a reaction-diffusion system. The RBS and FIB analysis yields that the porosity evolution has to be regarded as superposition of two independent processes, a linearly propagating diffusion front with a uniform speed and a slower dissolution process in regions which have already been passed by the diffusion front. The experimentally observed front evolution is captured by the Fisher-Kolmogorov-Petrovskii-Piskounov (FKPP). The slower dissolution is represented by a zero-order rate law which causes a gradual porosity in the thin film.

SELECTION OF CITATIONS
SEARCH DETAIL
...