Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Regul Toxicol Pharmacol ; 61(3): 261-75, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21889559

ABSTRACT

Thousands of drugs are currently in use, but only for a few of them experimental chronic fish data exist. Therefore, Huggett et al. (Human Ecol Risk Assess 2003; 9:1789-1799) proposed the fish plasma model (FPM) to extrapolate the potential of unintended long-term effects in fish. The FPM compares human therapeutic plasma concentrations (HPC(T)) with estimated fish steady-state concentrations (FPC(ss)), under the assumption that biological drug targets may be conserved across the species. In this study, the influence of using different input parameters on the model result was characterised for 42 drugs. The existence of structurally and functionally conserved protein targets in zebrafish could not be refuted. Thus, the FPM model application was not in contradiction to its basic assumption. Further, dissociation of drugs was shown to be important in determining the output and model robustness. As the proposed model for FPC(ss) estimation was considered to predict accurate values for neutral and lipophilic chemicals only, a modified bioconcentration model was used with D(OW) as predictor. Using reasonable worst case assumptions, a hazard was indicated for one third of the selected drugs. Our results support the notion that this approach might help to prioritise among in use drugs to identify compounds where follow up evidence should be considered.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Models, Theoretical , Pharmaceutical Preparations/blood , Zebrafish , 1-Octanol/chemistry , Animals , Area Under Curve , Humans , Hydrophobic and Hydrophilic Interactions , Pharmaceutical Preparations/metabolism , Pharmacokinetics , Proteins/metabolism , Risk Assessment/methods , Water/chemistry
2.
Aquat Toxicol ; 96(3): 167-81, 2010 Feb 18.
Article in English | MEDLINE | ID: mdl-20053463

ABSTRACT

Widespread occurrence of traces of pharmaceuticals (ng/L to microg/L) has been reported in aquatic systems. However, their effects on the environment and their environmental risks remain elusive. Generally, the acute toxicity towards non-target organisms has been assessed in laboratory experiments, but chronic toxicity studies have been performed only rarely. The guideline issued by the European Medicines Agency in 2006 is aimed at estimating the potential environmental risks of human pharmaceuticals by a tiered approach. The predicted environmental concentration (PEC) of a compound is estimated in phase I, and pharmaceuticals having a PEC above or equal 10ng/L undergo phase II testing. Otherwise they are not expected to pose a risk to the environment. Because some highly active compounds (HC) such as 17-alpha-ethinylestradiol, equine estrogens, trenbolone and the progestin levonorgestrel display adverse effects at concentrations below 10ng/L the question arises, whether additional HC compounds exist, and how they can be identified for undergoing environmental risk assessment. We addressed this question by searching for HC in the literature, and by developing a concept for identification of HC. The suggested mode of action concept is based on (i) the mode of action of the pharmaceutical taking the available toxicological information into account, (ii) the degree of sequence homology between the human drug target and the potential target in aquatic organisms and (iii) the importance of pathways affected by the pharmaceutical. We evaluated the mode of action concept by comparison to existing approaches, the fish plasma model (Huggett et al., 2003) and a QSAR model, called VirtualTox Lab (www.biograf.ch). All concepts result in similar classifications of the selected pharmaceuticals. However, there are some differences not only in the model assumptions, but also in its results. Our study leads to the conclusion that the mode of action concept is most suitable for the identification of HC. A refinement can be achieved by complementing this concept by the QSAR model (VirtualTox Lab), whereas the fish plasma model seemed to be less suitable due to the necessity of environmental concentration above 10ng/L for the identification of a risk.


Subject(s)
Environmental Monitoring/methods , Fresh Water/chemistry , Prescription Drugs/analysis , Water Pollutants, Chemical/analysis , Animals , Humans , Prescription Drugs/chemistry , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...