Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
2.
Oncogene ; 40(5): 997-1011, 2021 02.
Article in English | MEDLINE | ID: mdl-33323970

ABSTRACT

Estrogen receptor alpha gene (ESR1) mutations occur frequently in ER-positive metastatic breast cancer, and confer clinical resistance to aromatase inhibitors. Expression of the ESR1 Y537S mutation induced an epithelial-mesenchymal transition (EMT) with cells exhibiting enhanced migration and invasion potential in vitro. When small subpopulations of Y537S ESR1 mutant cells were injected along with WT parental cells, tumor growth was enhanced with mutant cells becoming the predominant population in distant metastases. Y537S mutant primary xenograft tumors were resistant to the antiestrogen tamoxifen (Tam) as well as to estradiol (E2) withdrawal. Y537S ESR1 mutant primary tumors metastasized efficiently in the absence of E2; however, Tam treatment significantly inhibited metastasis to distant sites. We identified a nine-gene expression signature, which predicted clinical outcomes of ER-positive breast cancer patients, as well as breast cancer metastasis to the lung. Androgen receptor (AR) protein levels were increased in mutant models, and the AR agonist dihydrotestosterone significantly inhibited estrogen-regulated gene expression, EMT, and distant metastasis in vivo, suggesting that AR may play a role in distant metastatic progression of ESR1 mutant tumors.


Subject(s)
Breast Neoplasms/drug therapy , Estrogen Receptor alpha/genetics , Receptors, Androgen/genetics , Tamoxifen/pharmacology , Animals , Aromatase Inhibitors/pharmacology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Dihydrotestosterone/pharmacology , Estradiol/metabolism , Estrogens/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Mutation/genetics , Neoplasm Metastasis , Receptors, Androgen/drug effects , Xenograft Model Antitumor Assays
3.
Horm Cancer ; 9(4): 215-228, 2018 08.
Article in English | MEDLINE | ID: mdl-29736566

ABSTRACT

After nearly 20 years of research, it is now established that mutations within the estrogen receptor (ER) gene, ESR1, frequently occur in metastatic breast cancer and influence response to hormone therapy. Though early studies presented differing results, sensitive sequencing techniques now show that ESR1 mutations occur at a frequency between 20 and 40% depending on the assay method. Recent studies have focused on several "hot spot mutations," a cluster of mutations found in the hormone-binding domain of the ESR1 gene. Throughout the course of treatment, tumor evolution can occur, and ESR1 mutations emerge and become enriched in the metastatic setting. Sensitive techniques to continually monitor mutant burden in vivo are needed to effectively treat patients with mutant ESR1. The full impact of these mutations on tumor response to different therapies remains to be determined. However, recent studies indicate that mutant-bearing tumors may be less responsive to specific hormonal therapies, and suggest that aromatase inhibitor (AI) therapy may select for the emergence of ESR1 mutations. Additionally, different mutations may respond discretely to targeted therapies. The need for more preclinical mechanistic studies on ESR1 mutations and the development of better agents to target these mutations are urgently needed. In the future, sequential monitoring of ESR1 mutational status will likely direct personalized therapeutic regimens appropriate to each tumor's unique mutational landscape.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Estrogen Receptor alpha/genetics , Molecular Targeted Therapy/methods , Precision Medicine/methods , Female , Humans , Mutation
4.
Virol J ; 14(1): 161, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28830495

ABSTRACT

BACKGROUND: The existing literature about HCV association with, and replication in mosquitoes is extremely poor. To fill this gap, we performed cellular investigations aimed at exploring (i) the capacity of HCV E1E2 glycoproteins to bind on Aedes mosquito cells and (ii) the ability of HCV serum particles (HCVsp) to replicate in these cell lines. METHODS: First, we used purified E1E2 expressing baculovirus-derived HCV pseudo particles (bacHCVpp) so we could investigate their association with mosquito cell lines from Aedes aegypti (Aag-2) and Aedes albopictus (C6/36). We initiated a series of infections of both mosquito cells (Ae aegypti and Ae albopictus) with the HCVsp (Lat strain - genotype 3) and we observed the evolution dynamics of viral populations within cells over the course of infection via next-generation sequencing (NGS) experiments. RESULTS: Our binding assays revealed bacHCVpp an association with the mosquito cells, at comparable levels obtained with human hepatocytes (HepaRG cells) used as a control. In our infection experiments, the HCV RNA (+) were detectable by RT-PCR in the cells between 21 and 28 days post-infection (p.i.). In human hepatocytes HepaRG and Ae aegypti insect cells, NGS experiments revealed an increase of global viral diversity with a selection for a quasi-species, suggesting a structuration of the population with elimination of deleterious mutations. The evolutionary pattern in Ae albopictus insect cells is different (stability of viral diversity and polymorphism). CONCLUSIONS: These results demonstrate for the first time that natural HCV could really replicate within Aedes mosquitoes, a discovery which may have major consequences for public health as well as in vaccine development.


Subject(s)
Aedes/virology , Hepacivirus/genetics , Insect Vectors/virology , Virus Replication/physiology , Animals , Cell Line , Genotype , Hepacivirus/isolation & purification , Hepatitis C/blood , Hepatocytes/virology , Humans , Mutation , Peptides/metabolism , Phylogeny , Polymerase Chain Reaction/methods , Polymorphism, Genetic , RNA, Viral , Sequence Analysis , Viral Envelope Proteins/metabolism
7.
Breast Cancer Res Treat ; 157(2): 253-265, 2016 06.
Article in English | MEDLINE | ID: mdl-27178332

ABSTRACT

The purpose of this study was to address the role of ESR1 hormone-binding mutations in breast cancer. Soft agar anchorage-independent growth assay, Western blot, ERE reporter transactivation assay, proximity ligation assay (PLA), coimmunoprecipitation assay, silencing assay, digital droplet PCR (ddPCR), Kaplan-Meier analysis, and statistical analysis. It is now generally accepted that estrogen receptor (ESR1) mutations occur frequently in metastatic breast cancers; however, we do not yet know how to best treat these patients. We have modeled the three most frequent hormone-binding ESR1 (HBD-ESR1) mutations (Y537N, Y537S, and D538G) using stable lentiviral transduction in human breast cancer cell lines. Effects on growth were examined in response to hormonal and targeted agents, and mutation-specific changes were studied using microarray and Western blot analysis. We determined that the HBD-ESR1 mutations alter anti-proliferative effects to tamoxifen (Tam), due to cell-intrinsic changes in activation of the insulin-like growth factor receptor (IGF1R) signaling pathway and levels of PIK3R1/PIK3R3. The selective estrogen receptor degrader, fulvestrant, significantly reduced the anchorage-independent growth of ESR1 mutant-expressing cells, while combination treatments with the mTOR inhibitor everolimus, or an inhibitor blocking IGF1R, and the insulin receptor significantly enhanced anti-proliferative responses. Using digital drop (dd) PCR, we identified mutations at high frequencies ranging from 12 % for Y537N, 5 % for Y537S, and 2 % for D538G in archived primary breast tumors from women treated with adjuvant mono-tamoxifen therapy. The HBD-ESR1 mutations were not associated with recurrence-free or overall survival in response in this patient cohort and suggest that knowledge of other cell-intrinsic factors in combination with ESR1 mutation status will be needed determine anti-proliferative responses to Tam.


Subject(s)
Breast Neoplasms/genetics , Estrogen Receptor alpha/genetics , Mutation , Receptors, Somatomedin/genetics , Tamoxifen/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Models, Genetic , Receptor, IGF Type 1 , Receptors, Estrogen/metabolism , Receptors, Somatomedin/metabolism , Signal Transduction , Tamoxifen/therapeutic use
8.
Breast Cancer Res Treat ; 154(2): 225-37, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26487496

ABSTRACT

Tamoxifen (Tam) resistance represents a significant clinical problem in estrogen receptor (ER) α-positive breast cancer. We previously showed that decreased expression of Rho guanine nucleotide dissociation inhibitor (Rho GDI) α, a negative regulator of the Rho GTPase pathway, is associated with Tam resistance. We now discover that androgen receptor (AR) is overexpressed in cells with decreased Rho GDIα and seek to determine AR's contribution to resistance. We engineered ERα-positive cell lines with stable knockdown (KD) of Rho GDIα (KD cells). Resistance mechanisms were examined using microarray profiling, protein-interaction studies, growth and reporter gene assays, and Western blot analysis combined with a specific AR antagonist and other signaling inhibitors. Tam-resistant tumors and cell lines with low Rho GDIα levels exhibited upregulated AR expression. Microarray of Rho GDIα KD cells indicated that activation of EGFR and ERα was associated with Tam treatment. When AR levels were elevated, interaction between AR and EGFR was detected. Constitutive and Tam-induced phosphorylation of EGFR and ERK1/2 was blocked by the AR antagonist Enzalutamide, suggesting that AR-mediated EGFR activation was a mechanism of resistance in these cells. Constitutive ERα phosphorylation and transcriptional activity was inhibited by Enzalutamide and the EGFR inhibitor gefitinib, demonstrating that AR-mediated EGFR signaling activated ERα. Tam exhibited agonist activity in AR overexpressing cells, stimulating ERα transcriptional activity and proliferation, which was blocked by Enzalutamide and gefitinib. We describe a novel model of AR-mediated Tam resistance through activation of EGFR signaling leading to ER activation in ERα-positive cells with low expression of Rho GDIα.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , ErbB Receptors/genetics , Estrogen Receptor alpha/agonists , Estrogen Receptor alpha/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Receptors, Androgen/metabolism , Tamoxifen/pharmacology , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , ErbB Receptors/metabolism , Female , Gene Expression , Gene Expression Profiling , Humans , MAP Kinase Signaling System/drug effects , Protein Binding , Receptors, Androgen/genetics , Tamoxifen/therapeutic use , Transcriptional Activation , rho Guanine Nucleotide Dissociation Inhibitor alpha/metabolism
9.
Breast Cancer Res Treat ; 150(3): 535-45, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25820519

ABSTRACT

The purpose of this study was to discover novel nuclear receptor targets in triple-negative breast cancer. Expression microarray, Western blot, qRT-PCR analyses, MTT growth assay, soft agar anchorage-independent growth assay, TRE reporter transactivation assay, and statistical analysis were performed in this study. We performed microarray analysis using 227 triple-negative breast tumors, and clustered the tumors into five groups according to their nuclear receptor expression. Thyroid hormone receptor beta (TRß) was one of the most differentially expressed nuclear receptors in group 5 compared to other groups. TRß low expressing patients were associated with poor outcome. We evaluated the role of TRß in triple-negative breast cancer cell lines representing group 5 tumors. Knockdown of TRß increased soft agar colony and reduced sensitivity to docetaxel and doxorubicin treatment. Docetaxel or doxorubicin long-term cultured cell lines also expressed decreased TRß protein. Microarray analysis revealed cAMP/PKA signaling was the only KEGG pathways upregulated in TRß knockdown cells. Inhibitors of cAMP or PKA, in combination with doxorubicin further enhanced cell apoptosis and restored sensitivity to chemotherapy. TRß-specific agonists enhanced TRß expression, and further sensitized cells to both docetaxel and doxorubicin. Sensitization was mediated by increased apoptosis with elevated cleaved PARP and caspase 3. TRß represents a novel nuclear receptor target in triple-negative breast cancer; low TRß levels were associated with enhanced resistance to both docetaxel and doxorubicin treatment. TRß-specific agonists enhance chemosensitivity to these two agents. Mechanistically enhanced cAMP/PKA signaling was associated with TRß's effects on response to chemotherapy.


Subject(s)
Drug Resistance, Neoplasm , Thyroid Hormone Receptors beta/genetics , Thyroid Hormone Receptors beta/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Docetaxel , Doxorubicin/pharmacology , Female , Gene Knockdown Techniques , Humans , MCF-7 Cells , Prognosis , Signal Transduction/drug effects , Taxoids/pharmacology , Triple Negative Breast Neoplasms/drug therapy
10.
Breast Cancer Res Treat ; 147(3): 473-85, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25178514

ABSTRACT

Androgen receptor (AR) is an attractive target in breast cancer because of its frequent expression in all the molecular subtypes, especially in estrogen receptor (ER)-positive luminal breast cancers. We have previously shown a role for AR overexpression in tamoxifen resistance. We engineered ER-positive MCF-7 cells to overexpress aromatase and AR (MCF-7 AR Arom cells) to explore the role of AR in aromatase inhibitor (AI) resistance. Androstendione (AD) was used as a substrate for aromatization to estrogen. The nonsteroidal AI anastrazole (Ana) inhibited AD-stimulated growth and ER transcriptional activity in MCF-7 Arom cells, but not in MCF-7 AR Arom cells. Enhanced activation of pIGF-1R and pAKT was found in AR-overexpressing cells, and their inhibitors restored sensitivity to Ana, suggesting that these pathways represent escape survival mechanisms. Sensitivity to Ana was restored with AR antagonists, or the antiestrogen fulvestrant. These results suggest that both AR and ERα must be blocked to restore sensitivity to hormonal therapies in AR-overexpressing ERα-positive breast cancers. AR contributed to ERα transcriptional activity in MCF-7 AR Arom cells, and AR and ERα co-localized in AD + Ana-treated cells, suggesting cooperation between the two receptors. AR-mediated resistance was associated with a failure to block ER transcriptional activity and enhanced up-regulation of AR and ER-responsive gene expression. Clinically, it may be necessary to block both AR and ERα in patients whose tumors express elevated levels of AR. In addition, inhibitors to the AKT/IGF-1R signaling pathways may provide alternative approaches to block escape pathways and restore hormone sensitivity in resistant breast tumors.


Subject(s)
Aromatase Inhibitors/pharmacology , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , Estrogen Receptor alpha/metabolism , Receptors, Androgen/metabolism , Anastrozole , Androstenedione/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Estradiol/analogs & derivatives , Estradiol/pharmacology , Estrogen Receptor Antagonists/pharmacology , Female , Fulvestrant , Humans , MCF-7 Cells/drug effects , Nitriles/pharmacology , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Receptor, IGF Type 1/metabolism , Receptors, Androgen/genetics , Tamoxifen/pharmacology , Triazoles/pharmacology
11.
Breast Cancer Res Treat ; 144(1): 11-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24487689

ABSTRACT

The idea that somatic ERα mutations could play an important role in the evolution of hormone-dependent breast cancers was proposed some years ago (Fuqua J Mammary Gland Biol Neoplasia 6(4):407-417, 2001; Dasgupta et al. Annu Rev Med 65:279-292, 2013), but has remained controversial until recently. A significant amount of new data has confirmed these initial observations and shown their significance, along with much additional work relevant to the treatment of breast cancer. Thus, it is the purpose of this review to summarize the research to date on the existence and clinical consequences of ERα mutations in primary and metastatic breast cancer.


Subject(s)
Breast Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , Estrogen Receptor alpha/genetics , Animals , Disease Progression , Female , Humans , Mutation
12.
Drug Discov Today Dis Mech ; 9(1-2): e19-e27, 2012.
Article in English | MEDLINE | ID: mdl-26568765

ABSTRACT

The androgen receptor (AR) is a proven clinical target in prostate cancer. Recent research indicates that it is an emerging hormonal target in breast cancer as well, with potential clinical benefit in both estrogen receptor(ER) positive and negative tumors. Compared to the ER, AR contains unique functional domains with relevance to its altered role in human breast cancer. The majority of ER-positive tumors express AR, and a significant percentage of ER-negative tumors might benefit from combined targeting of AR and the ErbB2/HER2 oncogene. Signaling downstream of AR might also affect many clinically important pathways which are also emerging clinical targets in breast cancer. AR expression might also play a role during tumor progression to metastatic disease. The role of AR as a new important biomarker in breast cancer will be reviewed herein.

13.
Philos Trans A Math Phys Eng Sci ; 367(1908): 4941-65, 2009 Dec 13.
Article in English | MEDLINE | ID: mdl-19884188

ABSTRACT

For comparing RNA rings or hairpins with reference or random ring sequences, circular versions of distances and distributions like those of Hamming and Gumbel are needed. We define these circular versions and we apply these new tools to the comparison of RNA relics (such as micro-RNAs and tRNAs) with viral genomes that have coevolved with them. Then we show how robust are the regulation networks incorporating in their boundary micro-RNAs as sources or new feedback loops involving ubiquitous proteins like p53 (which is a micro-RNA transcription factor) or oligopeptides regulating protein translation. Eventually, we propose a new coevolution game between viral and host genomes.


Subject(s)
Gene Expression Regulation, Viral/genetics , Genome, Viral/genetics , MicroRNAs/genetics , Nucleic Acid Conformation , Host-Pathogen Interactions/genetics , Humans
14.
J Med Virol ; 81(10): 1726-33, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19697405

ABSTRACT

The aim of this study was to determine the inhibition of binding activity of the monoclonal antibody (mAb) D32.10 which recognizes a highly conserved discontinuous antigenic determinant (E1:297-306, E2:480-494, and E2:613-621) expressed on the surface of serum-derived HCV particles (HCVsp) of genotypes 1a, 1b, 2a, and 3a. To this end, an in vitro direct cell-binding assay based on the attachment of radiolabeled HCVsp was developed, and Scatchard plots were used to analyze ligand-receptor binding data. HCV adsorption was also assessed by quantitating cell-associated viral RNA by a real-time RT-PCR method. Saturable concentration-dependent specific binding of HCVsp to Huh-7 or HepaRG cells was demonstrated. The Scatchard transformed data showed two-site interaction for Huh-7 and proliferative HepaRG cells: the high-affinity binding sites (K(d1) = 0.1-0.5 microg/ml) and the low-affinity binding sites (K(d1) = 5-10 microg/ml), and one-site high-affinity binding model between E1E2/D32.10-positive HCVsp and hepatocyte-like differentiated HepaRG cells. The E1E2-specific mAb D32.10 inhibited efficiently (>60%) and selectively the binding with an IC(50)

Subject(s)
Antibodies, Monoclonal/immunology , Hepacivirus/immunology , Hepacivirus/physiology , Hepatitis C Antibodies/immunology , Hepatocytes/virology , Virus Attachment , Cell Line , Humans , Inhibitory Concentration 50 , Viral Envelope Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...