Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 10: 1366, 2019.
Article in English | MEDLINE | ID: mdl-31708958

ABSTRACT

Untargeted approaches and thus biological interpretation of metabolomics results are still hampered by the reliable assignment of the global metabolome as well as classification and (putative) identification of metabolites. In this work we present an liquid chromatography-mass spectrometry (LC-MS)-based stable isotope assisted approach that combines global metabolome and tracer based isotope labeling for improved characterization of (unknown) metabolites and their classification into tracer derived submetabolomes. To this end, wheat plants were cultivated in a customized growth chamber, which was kept at 400 ± 50 ppm 13CO2 to produce highly enriched uniformly 13C-labeled sample material. Additionally, native plants were grown in the greenhouse and treated with either 13C9-labeled phenylalanine (Phe) or 13C11-labeled tryptophan (Trp) to study their metabolism and biochemical pathways. After sample preparation, liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis and automated data evaluation, the results of the global metabolome- and tracer-labeling approaches were combined. A total of 1,729 plant metabolites were detected out of which 122 respective 58 metabolites account for the Phe- and Trp-derived submetabolomes. Besides m/z and retention time, also the total number of carbon atoms as well as those of the incorporated tracer moieties were obtained for the detected metabolite ions. With this information at hand characterization of unknown compounds was improved as the additional knowledge from the tracer approaches considerably reduced the number of plausible sum formulas and structures of the detected metabolites. Finally, the number of putative structure formulas was further reduced by isotope-assisted annotation tandem mass spectrometry (MS/MS) derived product ion spectra of the detected metabolites. A major innovation of this paper is the classification of the metabolites into submetabolomes which turned out to be valuable information for effective filtering of database hits based on characteristic structural subparts. This allows the generation of a final list of true plant metabolites, which can be characterized at different levels of specificity.

2.
Toxins (Basel) ; 8(12)2016 12 05.
Article in English | MEDLINE | ID: mdl-27929394

ABSTRACT

The Fusarium mycotoxins HT-2 toxin (HT2) and T-2 toxin (T2) are frequent contaminants in oats. These toxins, but also their plant metabolites, may contribute to toxicological effects. This work describes the use of 13C-assisted liquid chromatography-high-resolution mass spectrometry for the first comprehensive study on the biotransformation of HT2 and T2 in oats. Using this approach, 16 HT2 and 17 T2 metabolites were annotated including novel glycosylated and hydroxylated forms of the toxins, hydrolysis products, and conjugates with acetic acid, putative malic acid, malonic acid, and ferulic acid. Further targeted quantitative analysis was performed to study toxin metabolism over time, as well as toxin and conjugate mobility within non-treated plant tissues. As a result, HT2-3-O-ß-d-glucoside was identified as the major detoxification product of both parent toxins, which was rapidly formed (to an extent of 74% in HT2-treated and 48% in T2-treated oats within one day after treatment) and further metabolised. Mobility of the parent toxins appeared to be negligible, while HT2-3-O-ß-d-glucoside was partly transported (up to approximately 4%) through panicle side branches and stem. Our findings demonstrate that the presented combination of untargeted and targeted analysis is well suited for the comprehensive elucidation of mycotoxin metabolism in plants.


Subject(s)
Avena/metabolism , T-2 Toxin/analogs & derivatives , T-2 Toxin/pharmacokinetics , Biotransformation , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry
3.
Anal Bioanal Chem ; 407(26): 8019-33, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26335000

ABSTRACT

An extensive study of the metabolism of the type A trichothecene mycotoxins HT-2 toxin and T-2 toxin in barley using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) is reported. A recently developed untargeted approach based on stable isotopic labelling, LC-Orbitrap-MS analysis with fast polarity switching and data processing by MetExtract software was combined with targeted LC-Q-TOF-MS(/MS) analysis for metabolite structure elucidation and quantification. In total, 9 HT-2 toxin and 13 T-2 toxin metabolites plus tentative isomers were detected, which were successfully annotated by calculation of elemental formulas and further LC-HRMS/MS measurements as well as partly identified with authentic standards. As a result, glucosylated forms of the toxins, malonylglucosides, and acetyl and feruloyl conjugates were elucidated. Additionally, time courses of metabolite formation and mass balances were established. For absolute quantification of those compounds for which standards were available, the method was validated by determining apparent recovery, signal suppression, or enhancement and extraction recovery. Most importantly, T-2 toxin was rapidly metabolised to HT-2 toxin and for both parent toxins HT-2 toxin-3-O-ß-glucoside was identified (confirmed by authentic standard) as the main metabolite, which reached its maximum already 1 day after toxin treatment. Graphical Abstract Isotope-assisted untargeted screening of HT-2 toxin and T-2 toxin metabolites in barley.


Subject(s)
Fusarium/metabolism , Hordeum/metabolism , Hordeum/microbiology , T-2 Toxin/analogs & derivatives , T-2 Toxin/metabolism , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods
4.
Anal Chem ; 86(23): 11533-7, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25372979

ABSTRACT

An untargeted metabolomics workflow for the detection of metabolites derived from endogenous or exogenous tracer substances is presented. To this end, a recently developed stable isotope-assisted LC-HRMS-based metabolomics workflow for the global annotation of biological samples has been further developed and extended. For untargeted detection of metabolites arising from labeled tracer substances, isotope pattern recognition has been adjusted to account for nonlabeled moieties conjugated to the native and labeled tracer molecules. Furthermore, the workflow has been extended by (i) an optional ion intensity ratio check, (ii) the automated combination of positive and negative ionization mode mass spectra derived from fast polarity switching, and (iii) metabolic feature annotation. These extensions enable the automated, unbiased, and global detection of tracer-derived metabolites in complex biological samples. The workflow is demonstrated with the metabolism of (13)C9-phenylalanine in wheat cell suspension cultures in the presence of the mycotoxin deoxynivalenol (DON). In total, 341 metabolic features (150 in positive and 191 in negative ionization mode) corresponding to 139 metabolites were detected. The benefit of fast polarity switching was evident, with 32 and 58 of these metabolites having exclusively been detected in the positive and negative modes, respectively. Moreover, for 19 of the remaining 49 phenylalanine-derived metabolites, the assignment of ion species and, thus, molecular weight was possible only by the use of complementary features of the two ion polarity modes. Statistical evaluation showed that treatment with DON increased or decreased the abundances of many detected metabolites.


Subject(s)
Isotope Labeling , Phenylalanine/analysis , Triticum/chemistry , Carbon Isotopes , Chromatography, High Pressure Liquid , Molecular Structure , Phenylalanine/metabolism , Spectrometry, Mass, Electrospray Ionization , Triticum/cytology , Triticum/metabolism
5.
J Am Soc Mass Spectrom ; 24(5): 701-10, 2013 May.
Article in English | MEDLINE | ID: mdl-23595260

ABSTRACT

We have studied sample preparation conditions to increase the reproducibility of positive UV-MALDI-TOF mass spectrometry of peptides in the amol range. By evaluating several α-cyano-4-hydroxy-cinnamic acid (CHCA) matrix batches and preparation protocols, it became apparent that two factors have a large influence on the reproducibility and the quality of the generated peptide mass spectra: (1) the selection of the CHCA matrix, which allows the most sensitive measurements and an easier finding of the "sweet spots," and (2) the amount of the sample volume deposited onto the thin crystalline matrix layer. We have studied in detail the influence of a contaminant, coming from commercial CHCA matrix batches, on sensitivity of generated peptide mass spectra in the amol as well as fmol range of a tryptic peptide mixture. The structure of the contaminant, N,N-dimethylbutyl amine, was determined by applying MALDI-FT-ICR mass spectrometry experiments for elemental composition and MALDI high energy CID experiments utilizing a tandem mass spectrometer (TOF/RTOF). A recrystallization of heavily contaminated CHCA batches that reduces or eliminates the determined impurity is described. Furthermore, a fast and reliable method for the assessment of CHCA matrix batches prior to tryptic peptide MALDI mass spectrometric analyses is presented.


Subject(s)
Amines/chemistry , Coumaric Acids/chemistry , Peptides/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Cattle , Cytochromes c/chemistry , Peptides/chemistry
6.
J Mass Spectrom ; 46(11): 1108-14, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22124981

ABSTRACT

An amphiphatic fullerene derivative (8-(N-Methyl-Fullero-Pyrrolidinium-1-yl-chloride)-3,6-Dioxaoctan-1-Ammonium Chloride (MFPDAC)), which is of great interest in nanotechnology due to the fact that it forms self-assembling fullerenic nanorods, has been structurally characterized with emphasis to its purity and thermal treatment of a formed nanorod film (on a LDI target) by means of laser desorption/ionization (LDI) coupled with high-resolution curved field reflectron time-of-flight (TOF) mass spectrometry, and by low energy MS/MS as well as in-source fragmentation experiments applying an quadrupole ion trap (QIT) combined with a two-stage reflectron TOF analyzer. The interpretation of LDI results has been supplemented by ESI QIT MS(n) (n = 1-3), as well as high-resolution ESI reflectron TOF mass spectrometric experiments. Based on the experimental data obtained by both desorption/ionization techniques, various types of analyzers and sample treatments, we could completely characterize MFPDAC and further found out that the investigated sample was not entirely free of impurities. Furthermore, the envisaged loss of the derivative sidechain upon the heat treatment in vacuum of the self-assembled nanorod sample film on a metallic substrate could be successfully monitored by LDI MS.


Subject(s)
Fullerenes/chemistry , Nanotubes/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tandem Mass Spectrometry
7.
Appl Environ Microbiol ; 76(7): 2353-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20118365

ABSTRACT

Zearalenone (ZON) is a potent estrogenic mycotoxin produced by several Fusarium species most frequently on maize and therefore can be found in food and animal feed. Since animal production performance is negatively affected by the presence of ZON, its detoxification in contaminated plant material or by-products of bioethanol production would be advantageous. Microbial biotransformation into nontoxic metabolites is one promising approach. In this study the main transformation product of ZON formed by the yeast Trichosporon mycotoxinivorans was identified and characterized by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and LC-diode array detector (DAD) analysis. The metabolite, named ZOM-1, was purified, and its molecular formula, C(18)H(24)O(7), was established by time of flight MS (TOF MS) from the ions observed at m/z 351.1445 [M-H](-) and at m/z 375.1416 [M+Na](+). Employing nuclear magnetic resonance (NMR) spectroscopy, the novel ZON metabolite was finally identified as (5S)-5-({2,4-dihydroxy-6-[(1E)-5-hydroxypent-1-en-1-yl]benzoyl}oxy)hexanoic acid. The structure of ZOM-1 is characterized by an opening of the macrocyclic ring of ZON at the ketone group at C6'. ZOM-1 did not show estrogenic activity in a sensitive yeast bioassay, even at a concentration 1,000-fold higher than that of ZON and did not interact with the human estrogen receptor in an in vitro competitive binding assay.


Subject(s)
Trichosporon/metabolism , Zearalenone/antagonists & inhibitors , Zearalenone/metabolism , Biotransformation , Chromatography, Liquid , Magnetic Resonance Spectroscopy , Molecular Weight , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Steroids/chemistry , Steroids/metabolism , Tandem Mass Spectrometry
8.
J Nanosci Nanotechnol ; 5(2): 198-203, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15853137

ABSTRACT

The investigated ionic C60 derivative self-assembles into nanorods. When the functional side groups are removed by heating the nanorods to 623 K, they retain their shape. Utilization of lithographic markers allows the study of identical nanostructures before and after heat treatment by dynamic mode atomic force microscopy. Various independent techniques, including Raman spectroscopy and mass spectroscopy demonstrate that the shape-preserving mechanism is a thermal-stripping process, stabilizing the original supramolecular morphology. The latter implies two coherent sub-processes: detachment of the side groups and oligopolymerization running in parallel, eventually yielding rod-shaped C60 polymers. Synthesizing fullerenic polymers in this way can lead to several applications.


Subject(s)
Carbon/chemistry , Fullerenes/chemistry , Hot Temperature , Nanostructures/chemistry , Nanotechnology/methods , Mass Spectrometry , Microscopy, Atomic Force , Models, Chemical , Molecular Structure , Nanostructures/ultrastructure , Polymers/chemistry , Spectrometry, Mass, Electrospray Ionization , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...