Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
PLoS Negl Trop Dis ; 9(5): e0003781, 2015 May.
Article in English | MEDLINE | ID: mdl-25978379

ABSTRACT

Leishmania spp. is a protozoan parasite and the causative agent of leishmaniasis. Thymidine kinase (TK) catalyses the transfer of the γ-phosphate of ATP to 2'-deoxythymidine (dThd) forming thymidine monophosphate (dTMP). L. major Type II TK (LmTK) has been previously shown to be important for infectivity of the parasite and therefore has potential as a drug target for anti-leishmanial therapy. In this study, we determined the enzymatic properties and the 3D structures of holo forms of the enzyme. LmTK efficiently phosphorylates dThd and dUrd and has high structural homology to TKs from other species. However, it significantly differs in its kinetic properties from Trypanosoma brucei TK since purines are not substrates of the enzyme and dNTPs such as dUTP inhibit LmTK. The enzyme had Km and kcat values for dThd of 1.1 µM and 2.62 s(-1) and exhibits cooperative binding for ATP. Additionally, we show that the anti-retroviral prodrug zidovudine (3-azido-3-deoxythymidine, AZT) and 5'-modified dUrd can be readily phosphorylated by LmTK. The production of recombinant enzyme at a level suitable for structural studies was achieved by the construction of C-terminal truncated versions of the enzyme and the use of a baculoviral expression system. The structures of the catalytic core of LmTK in complex with dThd, the negative feedback regulator dTTP and the bi-substrate analogue AP5dT, were determined to 2.74, 3.00 and 2.40 Å, respectively, and provide the structural basis for exclusion of purines and dNTP inhibition. The results will aid the process of rational drug design with LmTK as a potential target for anti-leishmanial drugs.


Subject(s)
Leishmania major/enzymology , Thymidine Kinase/chemistry , Adenosine Triphosphate/metabolism , Escherichia coli/genetics , Kinetics , Protein Structure, Quaternary , Substrate Specificity , Thymine Nucleotides/chemistry
2.
Bioorg Med Chem ; 21(18): 5876-85, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23916149

ABSTRACT

Previously we have shown that trityl and diphenyl deoxyuridine derivatives and their acyclic analogues can inhibit Plasmodium falciparum dUTPase (PfdUTPase). We report the synthesis of conformationally restrained amide derivatives as inhibitors PfdUTPase, including both acyclic and cyclic examples. Activity was dependent on the orientation and location of the amide constraining group. In the case of the acyclic series, we were able to obtain amide-constrained analogues which showed similar or greater potency than the unconstrained analogues. Unfortunately these compounds showed lower selectivity in cellular assays.


Subject(s)
Antimalarials/chemistry , Enzyme Inhibitors/chemistry , Nucleosides/chemistry , Plasmodium falciparum/enzymology , Protozoan Proteins/antagonists & inhibitors , Pyrophosphatases/antagonists & inhibitors , Amides/chemistry , Antimalarials/chemical synthesis , Antimalarials/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Kinetics , Nucleosides/chemical synthesis , Nucleosides/metabolism , Protein Binding , Protozoan Proteins/metabolism , Pyrophosphatases/metabolism , Uridine/chemistry
3.
ChemMedChem ; 6(10): 1816-31, 2011 Oct 04.
Article in English | MEDLINE | ID: mdl-22049550

ABSTRACT

Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) is a potential drug target for malaria. We previously reported some 5'-tritylated deoxyuridine analogues (both cyclic and acyclic) as selective inhibitors of the Plasmodium falciparum dUTPase. Modelling studies indicated that it might be possible to replace the trityl group with a diphenyl moiety, as two of the phenyl groups are buried, whereas the third is exposed to solvent. Herein we report the synthesis and evaluation of some diphenyl analogues that have lower lipophilicity and molecular weight than the trityl lead compound. Co-crystal structures show that the diphenyl inhibitors bind in a similar manner to the corresponding trityl derivatives, with the two phenyl moieties occupying the predicted buried phenyl binding sites. The diphenyl compounds prepared show similar or slightly lower inhibition of PfdUTPase, and similar or weaker inhibition of parasite growth than the trityl compounds.


Subject(s)
Biphenyl Compounds/chemistry , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Nucleosides/chemistry , Plasmodium falciparum , Pyrophosphatases/antagonists & inhibitors , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Humans , Nucleosides/chemical synthesis , Nucleosides/pharmacology , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Pyrophosphatases/metabolism
4.
J Agric Food Chem ; 59(23): 12589-97, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22074456

ABSTRACT

A chemical method for the efficient destruction of 2,4,6-trichloroanisole (TCA) and pentachloroanisole (PCA) in aqueous solutions by using hydrogen peroxide as an oxidant catalyzed by molybdate ions in alkaline conditions was developed. Under optimal conditions, more than 80.0% TCA and 75.8% PCA were degraded within the first 60 min of reaction. Chloroanisoles destruction was followed by a concomitant release of up to 2.9 chloride ions per TCA molecule and 4.6 chloride ions per PCA molecule, indicating an almost complete dehalogenation of chloroanisoles. This method was modified to be adapted to chloroanisoles removal from the surface of cork materials including natural cork stoppers (86.0% decrease in releasable TCA content), agglomerated corks (78.2%), and granulated cork (51.3%). This method has proved to be efficient and inexpensive with practical application in the cork industry to lower TCA levels in cork materials.


Subject(s)
Anisoles/chemistry , Food Contamination/prevention & control , Hydrogen Peroxide , Anisoles/analysis , Food Contamination/analysis , Food Packaging/instrumentation , Odorants/analysis , Odorants/prevention & control , Quercus , Taste , Wine/analysis
5.
Appl Environ Microbiol ; 77(16): 5688-96, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21724894

ABSTRACT

Filamentous fungi produce an impressive variety of secondary metabolites; many of them have important biological activities. The biosynthesis of these secondary metabolites is frequently induced by plant-derived external elicitors and appears to also be regulated by internal inducers, which may work in a way similar to that of bacterial autoinducers. The biosynthesis of penicillin in Penicillium chrysogenum is an excellent model for studying the molecular mechanisms of control of gene expression due to a good knowledge of the biochemistry and molecular genetics of ß-lactam antibiotics and to the availability of its genome sequence and proteome. In this work, we first developed a plate bioassay that allows direct testing of inducers of penicillin biosynthesis using single colonies of P. chrysogenum. Using this bioassay, we have found an inducer substance in the conditioned culture broths of P. chrysogenum and Acremonium chrysogenum. No inducing effect was exerted by γ-butyrolactones, jasmonic acid, or the penicillin precursor δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine. The conditioned broth induced penicillin biosynthesis and transcription of the pcbAB, pcbC, and penDE genes when added at inoculation time, but its effect was smaller if added at 12 h and it had no effect when added at 24 h, as shown by Northern analysis and lacZ reporter studies. The inducer molecule was purified and identified by mass spectrometry (MS) and nuclear magnetic resonance (NMR) as 1,3-diaminopropane. Addition of pure 1,3-diaminopropane stimulated the production of penicillin by about 100% compared to results for the control cultures. Genes for the biosynthesis of 1,3-diaminopropane have been identified in the P. chrysogenum genome.


Subject(s)
Diamines/metabolism , Penicillins/biosynthesis , Penicillium chrysogenum/metabolism , Acremonium/metabolism , Biological Assay/methods , Candida/chemistry , Chromatography, High Pressure Liquid , Chromatography, Ion Exchange , Culture Media, Conditioned/chemistry , Diamines/isolation & purification , Diamines/pharmacology , Gene Expression Regulation, Fungal , Genes, Fungal , Magnetic Resonance Spectroscopy , Mass Spectrometry , Mycelium/genetics , Penicillium chrysogenum/drug effects , Penicillium chrysogenum/genetics , Transcription, Genetic
6.
Eur J Med Chem ; 46(8): 3309-14, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21600680

ABSTRACT

We have previously identified a series of triphenylmethane derivatives of deoxyuridine with antimalarial activity in vitro which selectively inhibit Plasmodium falciparum deoxyuridine triphosphate nucleotidohydrolase (PfdUTPase) compared to the human enzyme. The crystal structure of PfdUTPase in complex with one of these inhibitors suggested that the triphenylmethane derivative was selective due to a series of interactions between the trityl group and the side chains of residues Phe(46), Ile(117) and Lys(96) located in a hydrophobic pocket distinct from the phosphate binding site. Here we show by site-directed mutagenesis that the hydrophobic nature of the trityl binding site and in particular aromatic interactions established between the inhibitor and residue Phe(46) contribute significantly to the binding of uracil-based derivatives containing trityl groups in the 5'-position. Thus, changing Phe(46) for alanine resulted in increased K(i) values for all compounds tested. Conversely, substitution of the polar residue Lys(96) for Ala results in smaller K(i) values and an increase in selectivity with regard to human dUTPase. This information will aid in the design of inhibitors with improved activity against the Plasmodium enzyme.


Subject(s)
Lysine/chemistry , Phenylalanine/chemistry , Plasmodium falciparum/enzymology , Pyrophosphatases/antagonists & inhibitors , Recombinant Proteins/metabolism , Trityl Compounds/chemistry , Amino Acid Sequence , Antimalarials/chemistry , Antimalarials/pharmacology , Binding Sites/drug effects , Cloning, Molecular , Deoxyuridine/metabolism , Drug Design , Escherichia coli , Humans , Kinetics , Lysine/metabolism , Malaria, Falciparum/enzymology , Malaria, Falciparum/parasitology , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Phenylalanine/metabolism , Plasmodium falciparum/chemistry , Plasmodium falciparum/genetics , Protein Binding/drug effects , Pyrophosphatases/chemistry , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sequence Alignment , Structure-Activity Relationship , Substrate Specificity , Trityl Compounds/pharmacology
7.
Biochimie ; 92(2): 178-86, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19879316

ABSTRACT

Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase, EC 3.6.1.23) catalyzes the hydrolysis of dUTP to dUMP and pyrophosphate, and plays important roles in nucleotide metabolism and DNA replication. Hydrolysis of other nucleotides similar in structure to dUTP would be physiologically negative and therefore high substrate specificity is essential. Binding and hydrolysis of nucleotides different to dUTP by the dUTPases from Plasmodium falciparum (PfdUTPase) and human (hdUTPase) was evaluated by applying isothermal titration calorimetry (ITC). The ribo and deoxyribonucleoside triphosphates dGTP, dATP, dCTP, dTTP, UTP, FdUTP and IdUTP have been analysed. dUTP and FdUTP were the most specific substrates for both enzymes. The specificity constants (k(cat)/K(m)) for the remaining ones, except for the IdUTP, were very similar for both enzymes, although PfdUTPase showed a slightly higher specificity for dCTP and UTP and the human enzyme for dTTP and dCTP. PfdUTPase was very efficient in using FdUTP as substrate indicating that small size substituents in the 5' position are well tolerated. In addition product inhibition was assessed by binding studies with the nucleoside monophosphate derivatives and thermodynamic parameters were established. When FdUTP hydrolysis was monitored, Plasmodium dUTPase was more sensitive to end-product inhibition by FdUMP than the human enzyme. Taken together these results highlight further significant differences between the human and Plasmodium enzymes that may be exploitable in selective inhibitor design.


Subject(s)
Plasmodium falciparum/enzymology , Pyrophosphatases/metabolism , Calorimetry , Deoxyuracil Nucleotides/chemistry , Deoxyuracil Nucleotides/metabolism , Drug Design , Enzyme Inhibitors/pharmacology , Humans , Hydrolysis/drug effects , Kinetics , Protein Multimerization , Protein Structure, Quaternary , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/chemistry , Substrate Specificity
8.
Environ Microbiol ; 11(1): 99-110, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18783381

ABSTRACT

Thirteen species of white-rot fungi tested have been shown to efficiently biodegrade 1 mM 2,4,6-trichloroanisole (2,4,6-TCA) in liquid cultures. The maximum biodegradation rate (94.5% in 10-day incubations) was exhibited by a Phlebia radiata strain. The enzymes of the ligninolytic complex, laccase, lignin peroxidase (LiP), manganese peroxidase (MnP) and versatile peroxidase (VP) were not able to transform 2,4,6-TCA in in vitro reactions, indicating that the ligninolytic complex was not involved in the initial attack to 2,4,6-TCA. Instead, the first biodegradative steps were carried out by a phase I and phase II reactions system. Phase I reaction consisted on a O-demethylation catalysed by a microsomal cytochrome P-450 monooxygenase to produce 2,4,6-trichlorophenol (2,4,6-TCP). Later, in a phase II reaction catalysed by a microsomal UDP-glucosyltransferase, 2,4,6-TCP was detoxified by O-conjugation with D-glucose to produce 2,4,6-TCP-1-O-d-glucoside (TCPG). This compound accumulated in culture supernatants, reaching its maximum concentration between 48 and 72 h of growth. TCPG levels decreased constantly by the end of fermentation, indicating that it was subsequently metabolized. A catalase activity was able to break in vitro the glycosidic link to produce 2,4,6-TCP, whereas ligninolytic enzymes did not have a significant effect on the biotransformation of that compound. Once formed, 2,4,6-TCP was further degraded as detected by a concomitant release of 2.6 mol of chloride ions by 1 mol of initial 2,4,6-TCA, indicating that this compound underwent almost a complete dehalogenation and biodegradation. It was concluded that P. radiata combines two different degradative mechanisms in order to biodegrade 2,4,6-TCA. The significance of the capability of white-rot fungi to O-demethylate chloroanisoles for the global chlorine cycle is discussed.


Subject(s)
Anisoles/metabolism , Basidiomycota/metabolism , Biotransformation , Chlorine/metabolism , Chlorophenols/metabolism , Cytochrome P-450 Enzyme System/metabolism , Glucosyltransferases/metabolism
9.
Environ Microbiol ; 9(10): 2512-21, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17803776

ABSTRACT

The biodegradation rate of chlorophenols in the environment seems to be limited by a competitive mechanism of O-methylation which produces chloroanisoles with a high potential of being bioconcentrated in living organisms. In this work we report for the first time the isolation of three soil bacterial strains able to efficiently degrade 2,4,6-trichloroanisole (2,4,6-TCA). These strains were identified as Xanthomonas retroflexus INBB4, Pseudomonas putida INBP1 and Acinetobacter radioresistens INBS1. In these isolates 2,4,6-TCA was efficiently metabolized in a minimal medium containing methanol and 2,4,6-TCA as the only carbon sources, with a concomitant release of 3 mol of chloride ion from 1 mol of 2,4,6-TCA, indicating complete dehalogenation of 2,4,6-TCA. 2,4,6-trichlorophenol (2,4,6-TCP) was identified as a degradative intermediate, indicating that 2,4,6-TCA underwent O-demethylation as the first step in the biodegradation process. 2,4,6-TCP was further transformed into 2,6-dichloro-para-hydroquinone (2,6-DCHQ) and subsequently mineralized. The degradation of chloroanisoles could improve the overall biodegradation of chlorophenols in the environment, because those chlorophenols previously biomethylated might also be later biodegraded. Xanthomonas retroflexus INBB4 has two O-demethylation systems: one is an oxygenase-type demethylase, and the other is a tetrahydrofolate (THF)-dependent O-demethylase. On the contrary O-demethylation of 2,4,6-TCA in P. putida INBP1 is just catalysed by an oxygenase-type NADH/NADPH-dependent O-demethylase, whereas in A. radioresistens INBS1 a THF-dependent O-demethylase activity was detected.


Subject(s)
Anisoles/metabolism , Chlorophenols/metabolism , Gram-Negative Aerobic Rods and Cocci/metabolism , Oxidoreductases, O-Demethylating/metabolism , Soil Microbiology , Anisoles/chemistry , Base Sequence , Biodegradation, Environmental , Chlorophenols/chemistry , Gram-Negative Aerobic Rods and Cocci/enzymology , Methylation , Oxidoreductases, O-Demethylating/chemistry , RNA, Ribosomal, 16S/genetics
10.
Chem Biol ; 14(3): 279-90, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17379143

ABSTRACT

The gene cluster responsible for pimaricin biosynthesis in Streptomyces natalensis contains a cholesterol oxidase-encoding gene (pimE) surrounded by genes involved in pimaricin production. Gene-inactivation and -complementation experiments revealed that pimE encodes a functional cholesterol oxidase and, surprisingly, that it is also involved in pimaricin biosynthesis. This extracellular enzyme was purified from S. natalensis culture broths to homogeneity, and it was shown to restore pimaricin production when added to the mutant culture broths. Other cholesterol oxidases also triggered pimaricin production, suggesting that these enzymes could act as signaling proteins for polyene biosynthesis. This finding constitutes the description of a cholesterol oxidase gene with an involvement in antibiotic biosynthesis, and it broadens the scope of the biological functions for this type of oxidase.


Subject(s)
Antifungal Agents/metabolism , Cholesterol Oxidase/metabolism , Natamycin/biosynthesis , Amino Acid Sequence , Cholesterol Oxidase/genetics , Molecular Sequence Data , Multigene Family , Mutagenesis , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Transcription, Genetic
11.
Metab Eng ; 9(2): 217-27, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17142079

ABSTRACT

The biosynthesis of the antifungal pimaricin in Streptomyces natalensis is very sensitive to phosphate regulation. Concentrations of inorganic phosphate above 1mM drastically reduced pimaricin production. At 10mM phosphate, expression of all the pimaricin biosynthesis (pim) genes including the pathway-specific positive regulator pimR is fully repressed. The phoU-phoR-phoP cluster of S. natalensis encoding two-component Pho system was cloned and sequenced. Binding of the response regulator PhoP to the consensus PHO boxes in the phoU-phoRP intergenic promoter region was observed. A phoP-disrupted mutant and a phoR-phoP deletion mutant were obtained. Production of pimaricin in these two mutants increased up to 80% in complex yeast extract-malt extract (YEME) or NBG media and showed reduced sensitivity to phosphate control. Four of the pim genes, pimS1, pimS4, pimC and pimG showed increased expression in the phoP-disrupted mutant. However, no consensus PHO boxes were found in the promoter regions of any of the pim genes, suggesting that phosphate control of these genes is mediated indirectly by PhoR-PhoP involving modification of pathway-specific regulators.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Deletion , Genetic Engineering/methods , Natamycin/metabolism , Phosphates/metabolism , Streptomyces/metabolism , Feedback/physiology , Streptomyces/genetics
12.
Microbiology (Reading) ; 152(Pt 10): 3147-3156, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17005993

ABSTRACT

Production of pimaricin by Streptomyces natalensis ATCC 27448 is elicited by the PI-factor, an autoinducer secreted by the producer strain during the rapid growth phase. Exogenous PI-factor restored pimaricin production in a mutant strain npi287 defective in PI-factor biosynthesis. During purification of the PI-factor, a second pimaricin-inducing fraction different from PI-factor was isolated from the culture broth of wild-type S. natalensis ATCC 27448. After purification by HPLC and analysis by MS and NMR, this active fraction was shown to contain glycerol and lactic acid. Pure glycerol restored pimaricin production in liquid cultures of the autoinducer-defective npi287 mutant. A similar effect was exerted by ethylene glycol, 1,2-propanediol and 1,3-propanediol but not by higher polyalcohols or by glycerol acetate or glycerol lactate esters. Glycerol stimulated (30-270 %) the production of six different polyene macrolide antibiotics by their respective producer strains. Addition of glycerol to the inducer-defective npi287 strain restored pimaricin production but did not result in extracellular or intracellular accumulation of PI-factor. Exogenously added PI-factor was internalized by the cells in the presence of glycerol, and a mixture of both PI-factor and glycerol produced a slightly higher inducing effect on pimaricin production than PI-factor alone. In summary, glycerol, ethylene glycol and propanediol exert a bypass of the PI-factor inducing effect on pimaricin biosynthesis.


Subject(s)
Ethylene Glycol/metabolism , Glycerol/metabolism , Natamycin/biosynthesis , Polyenes/metabolism , Propylene Glycols/metabolism , Streptomyces/metabolism , Butanols/metabolism , Butylamines/metabolism , Streptomyces/genetics
13.
J Biol Chem ; 279(40): 41586-93, 2004 Oct 01.
Article in English | MEDLINE | ID: mdl-15231842

ABSTRACT

A chemically novel autoinducer (PI factor) has been purified from cultures of the pimaricin producer Streptomyces natalensis ATCC27448. The chemical structure of the PI molecule was identified as 2,3-diamino-2,3-bis (hydroxymethyl)-1,4-butanediol. Pimaricin biosynthesis in S. natalensis npi287, a mutant impaired in pimaricin production, was restored by supplementation with either A-factor from Streptomyces griseus IFO13350 or with PI factor. S. natalensis did not synthesize A-factor. The PI autoinducer was active at very low concentrations (50-350 nm). A threshold level of 50 nm was required to observe the induction effect. The dose-response curve was typical of a quorum-sensing type mechanism. The biosynthesis of PI factor was associated with cell growth of S. natalensis, both in defined and complex media. Supplementation of the wild-type S. natalensis with pure PI (300 nm) resulted in a stimulation of 33% of the production of pimaricin. These results indicate that the endogenous synthesis of PI factor is limiting for pimaricin biosynthesis in the wild-type strain. This water-soluble PI factor belongs to a novel class of autoinducers in Streptomyces species different from the classical butyrolactone autoinducers. Because restoration of pimaricin production in the npi287 mutant is conferred by both A-factor and PI factor, S. natalensis appears to be able to integrate different quorum signals from actinomycetes.


Subject(s)
Natamycin/biosynthesis , Streptomyces/metabolism , Antifungal Agents , Butanols/metabolism , Butylamines/metabolism , Feedback, Physiological , Molecular Structure , Transcription Factors
14.
Microbiology (Reading) ; 148(Pt 5): 1413-1420, 2002 May.
Article in English | MEDLINE | ID: mdl-11988515

ABSTRACT

Three genes from the aminoethoxyvinylglycine (AVG)-producing Streptomyces sp. NRRL 5331 involved in threonine biosynthesis, hom, thrB and thrC, encoding homoserine dehydrogenase (HDH), homoserine kinase (HK) and threonine synthase (TS), respectively, have been cloned and sequenced. The hom and thrC genes appear to be organized in a bicistronic operon as deduced by disruption experiments. The thrB gene, however, is transcribed as a monocistronic transcript. The encoded proteins are quite similar to the HDH, HK and TS proteins from other bacterial species. The overall organization of these three genes, in the order hom-thrC-thrB, differs from that in other bacteria and is similar to that reported in the Streptomyces coelicolor genome sequence. This is the first time in which the gene cluster for the three last steps of threonine biosynthesis has been characterized from a streptomycete. Disruption of thrC indicated that threonine is not a direct precursor for AVG biosynthesis in Streptomyces sp. NRRL 5331 and suggested that the branching point of the aspartic acid-derived biosynthetic route of this metabolite should lie earlier on the threonine biosynthetic route.


Subject(s)
Carbon-Oxygen Lyases/genetics , Glycine/analogs & derivatives , Glycine/metabolism , Homoserine Dehydrogenase/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Streptomyces/genetics , Streptomyces/metabolism , Amino Acid Sequence , Base Sequence , Carbon-Oxygen Lyases/chemistry , Cloning, Molecular , Gene Expression Regulation, Bacterial , Gene Order , Genes, Bacterial/genetics , Homoserine Dehydrogenase/chemistry , Molecular Sequence Data , Mutation , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Promoter Regions, Genetic/genetics , Streptomyces/enzymology , Streptomyces/growth & development , Threonine/biosynthesis , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...