Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 14: 76, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26983643

ABSTRACT

BACKGROUND: Automation of cell therapy manufacturing promises higher productivity of cell factories, more economical use of highly-trained (and costly) manufacturing staff, facilitation of processes requiring manufacturing steps at inconvenient hours, improved consistency of processing steps and other benefits. One of the most broadly disseminated engineered cell therapy products is immunomagnetically selected CD34+ hematopoietic "stem" cells (HSCs). METHODS: As the clinical GMP-compliant automat CliniMACS Prodigy is being programmed to perform ever more complex sequential manufacturing steps, we developed a CD34+ selection module for comparison with the standard semi-automatic CD34 "normal scale" selection process on CliniMACS Plus, applicable for 600 × 10(6) target cells out of 60 × 10(9) total cells. Three split-validation processings with healthy donor G-CSF-mobilized apheresis products were performed; feasibility, time consumption and product quality were assessed. RESULTS: All processes proceeded uneventfully. Prodigy runs took about 1 h longer than CliniMACS Plus runs, albeit with markedly less hands-on operator time and therefore also suitable for less experienced operators. Recovery of target cells was the same for both technologies. Although impurities, specifically T- and B-cells, were 5 ± 1.6-fold and 4 ± 0.4-fold higher in the Prodigy products (p = ns and p = 0.013 for T and B cell depletion, respectively), T cell contents per kg of a virtual recipient receiving 4 × 10(6) CD34+ cells/kg was below 10 × 10(3)/kg even in the worst Prodigy product and thus more than fivefold below the specification of CD34+ selected mismatched-donor stem cell products. The products' theoretical clinical usability is thus confirmed. CONCLUSIONS: This split validation exercise of a relatively short and simple process exemplifies the potential of automatic cell manufacturing. Automation will further gain in attractiveness when applied to more complex processes, requiring frequent interventions or handling at unfavourable working hours, such as re-targeting of T-cells.


Subject(s)
Antigens, CD34/metabolism , Automation , Blood Component Removal/methods , Cell- and Tissue-Based Therapy , Hematopoietic Stem Cells/cytology , Flow Cytometry , Humans , Reproducibility of Results
2.
Cytotherapy ; 17(10): 1465-71, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25981397

ABSTRACT

BACKGROUND AIMS: Immunomagnetic enrichment of CD34+ hematopoietic "stem" cells (HSCs) using paramagnetic nanobead coupled CD34 antibody and immunomagnetic extraction with the CliniMACS plus system is the standard approach to generating T-cell-depleted stem cell grafts. Their clinical beneficence in selected indications is established. Even though CD34+ selected grafts are typically given in the context of a severely immunosuppressive conditioning with anti-thymocyte globulin or similar, the degree of T-cell depletion appears to affect clinical outcomes and thus in addition to CD34 cell recovery, the degree of T-cell depletion critically describes process quality. An automatic immunomagnetic cell processing system, CliniMACS Prodigy, including a protocol for fully automatic CD34+ cell selection from apheresis products, was recently developed. We performed a formal process validation to support submission of the protocol for CE release, a prerequisite for clinical use of Prodigy CD34+ products. METHODS: Granulocyte-colony stimulating factor-mobilized healthy-donor apheresis products were subjected to CD34+ cell selection using Prodigy with clinical reagents and consumables and advanced beta versions of the CD34 selection software. Target and non-target cells were enumerated using sensitive flow cytometry platforms. RESULTS: Nine successful clinical-scale CD34+ cell selections were performed. Beyond setup, no operator intervention was required. Prodigy recovered 74 ± 13% of target cells with a viability of 99.9 ± 0.05%. Per 5 × 10E6 CD34+ cells, which we consider a per-kilogram dose of HSCs, products contained 17 ± 3 × 10E3 T cells and 78 ± 22 × 10E3 B cells. CONCLUSIONS: The process for CD34 selection with Prodigy is robust and labor-saving but not time-saving. Compared with clinical CD34+ selected products concurrently generated with the predecessor technology, product properties, importantly including CD34+ cell recovery and T-cell contents, were not significantly different. The automatic system is suitable for routine clinical application.


Subject(s)
Antigens, CD34/immunology , Blood Component Removal/methods , Cell Separation/methods , Hematopoietic Stem Cells/cytology , Immunomagnetic Separation/methods , Antilymphocyte Serum/immunology , Automation, Laboratory , B-Lymphocytes/immunology , Cells, Cultured , Flow Cytometry , Granulocyte Colony-Stimulating Factor/immunology , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/immunology , Humans , Lymphocyte Depletion/methods , T-Lymphocytes/immunology
3.
Genome Res ; 23(2): 248-59, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23080539

ABSTRACT

Pluripotent stem cells evade replicative senescence, whereas other primary cells lose their proliferation and differentiation potential after a limited number of cell divisions, and this is accompanied by specific senescence-associated DNA methylation (SA-DNAm) changes. Here, we investigate SA-DNAm changes in mesenchymal stromal cells (MSC) upon long-term culture, irradiation-induced senescence, immortalization, and reprogramming into induced pluripotent stem cells (iPSC) using high-density HumanMethylation450 BeadChips. SA-DNAm changes are highly reproducible and they are enriched in intergenic and nonpromoter regions of developmental genes. Furthermore, SA-hypomethylation in particular appears to be associated with H3K9me3, H3K27me3, and Polycomb-group 2 target genes. We demonstrate that ionizing irradiation, although associated with a senescence phenotype, does not affect SA-DNAm. Furthermore, overexpression of the catalytic subunit of the human telomerase (TERT) or conditional immortalization with a doxycycline-inducible system (TERT and SV40-TAg) result in telomere extension, but do not prevent SA-DNAm. In contrast, we demonstrate that reprogramming into iPSC prevents almost the entire set of SA-DNAm changes. Our results indicate that long-term culture is associated with an epigenetically controlled process that stalls cells in a particular functional state, whereas irradiation-induced senescence and immortalization are not causally related to this process. Absence of SA-DNAm in pluripotent cells may play a central role for their escape from cellular senescence.


Subject(s)
Cellular Senescence/genetics , DNA Methylation , Pluripotent Stem Cells/metabolism , Adult , Aged , Cell Line, Transformed , Cells, Cultured , Cellular Senescence/radiation effects , DNA Methylation/radiation effects , Epigenesis, Genetic/radiation effects , Gamma Rays/adverse effects , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/radiation effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/radiation effects , Middle Aged , Models, Biological , Pluripotent Stem Cells/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...