Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 6(1): 11-31, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38125587

ABSTRACT

Gas sensors allow the monitoring of the chemical environment of humans, which is often crucial for their wellbeing or even survival. Miniaturization, reversibility, and selectivity are some of the key challenges for serial use of chemical sensors. This tutorial review describes critical aspects when using nanomaterials as sensing substrates for the application in chemiresistive gas sensors. Graphene has been shown to be a promising candidate, as it allows gas sensors to be operated at room temperature, possibly saving large amounts of energy. In this review, an overview is given on the general mechanisms for gas-sensitive semiconducting materials and the implications of doping and functionalization on the sensing parameters of chemiresistive devices. It shows in detail how different challenges, like sensitivity, response time, reversibility and selectivity have been approached by material development and operation modes. In addition, perspectives from the area of data analysis and intelligent algorithms are presented, which can further enhance these sensors' usability in the field.

2.
ACS Sens ; 8(9): 3530-3537, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37505186

ABSTRACT

In process analytics or environmental monitoring, the real-time recording of the composition of complex samples over a long period of time presents a great challenge. Promising solutions are label-free techniques such as surface plasmon resonance (SPR) spectroscopy. They are, however, often limited due to poor reversibility of analyte binding. In this work, we introduce how SPR imaging in combination with a semi-selective functional surface and smart data analysis can identify small and chemically similar molecules. Our sensor uses individual functional spots made from different ratios of graphene oxide and reduced graphene oxide, which generate a unique signal pattern depending on the analyte due to different binding affinities. These patterns allow four purine bases to be distinguished after classification using a convolutional neural network (CNN) at concentrations as low as 50 µM. The validation and test set classification accuracies were constant across multiple measurements on multiple sensors using a standard CNN, which promises to serve as a future method for developing online sensors in complex mixtures.


Subject(s)
Deep Learning , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Diagnostic Imaging , Purines
SELECTION OF CITATIONS
SEARCH DETAIL
...