Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Macromolecules ; 57(9): 3967-3984, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38911610

ABSTRACT

Polymer nanocomposites exhibit a heterogeneous mechanical behavior that is strongly dependent on the interaction between the polymer matrix and the nanofiller. Here, we provide a detailed investigation of the mechanical response of model polymer nanocomposites under deformation, across a range of temperatures, from the glassy regime to the liquid one, via atomistic molecular dynamics simulations. We study the poly(ethylene oxide) matrix with silica nanoparticles (PEO/SiO2) as a model polymer nanocomposite system with attractive polymer/nanofiller interactions. Probing the properties of polymer chains at the molecular level reveals that the effective mass density of the matrix and interphase regions changes during deformation. This decrease in density is much more pronounced in the glassy state. We focus on factors that govern the mechanical response of PEO/SiO2 systems by investigating the distribution of the (local) mechanical properties, focusing on the polymer/nanofiller interphase and matrix regions. As expected when heating the system, a decrease in Young's modulus is observed, accompanied by an increase in Poisson's ratio. The observed differences regarding the rigidity between the interphase and the matrix region decrease as the temperature rises; at temperatures well above the glass-transition temperature, the rigidity of the interphase approaches the matrix one. To describe the nonlinear viscoelastic behavior of polymer chains, the elastic modulus of the PEO/SiO2 systems is further calculated as a function of the strain for the entire nanocomposite, as well as the interphase and matrix regions. The elastic modulus drops dramatically with increasing strain for both the matrix and the interphase, especially in the small-deformation regime. We also shed light on characteristic structural and dynamic attributes during deformation. Specifically, we examine the rearrangement behavior as well as the segmental and center-of-mass dynamics of polymer chains during deformation by probing the mobility of polymer chains in both axial and radial motions under deformation. The behavior of the polymer motion in the axial direction is dominated by the deformation, particularly at the interphase, whereas a more pronounced effect of the temperature is observed in the radial directions for both the interphase and matrix regions.

2.
Nano Lett ; 24(1): 148-155, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37983090

ABSTRACT

Understanding the mechanism of mechanical reinforcement in glassy polymer nanocomposites is of paramount importance for their tailored design. Here, we present a detailed investigation, via atomistic simulation, of the coupling between density, structure, and conformations of polymer chains with respect to their role in mechanical reinforcement. Probing the properties at the molecular level reveals that the effective mass density as well as the rigidity of the matrix region changes with filler volume fraction, while that of the interphase remains constant. The origin of the mechanical reinforcement is attributed to the heterogeneous chain conformations in the vicinity of the nanoparticles, involving a 2-fold mechanism. In the low-loading regime, the reinforcement comes mainly from a thin, single-molecule, 2D-like layer of adsorbed polymer segments on the nanoparticle, whereas in the high-loading regime, the reinforcement is dominated by the coupling between train and bridge conformations; the latter involves segments connecting neighboring nanoparticles.

3.
MethodsX ; 9: 101931, 2022.
Article in English | MEDLINE | ID: mdl-36451781

ABSTRACT

We propose a methodology for calculating the distribution of the mechanical properties in model atomistic polymer-based nanostructured systems. The use of atomistic simulations is key in unravelling the fundamental mechanical behavior of composite materials. Most simulations involving the mechanical properties of polymer nanocomposites (PNCs) concern their global (average) properties, which are typically extracted by applying macroscopic strain on the boundaries of the simulation box and calculating the total (global) stress by invoking the Virial formalism over all atoms within the simulation box; thus, extracting the pertinent mechanical properties from the corresponding stress-strain relation. However, in order to probe the distribution of mechanical properties within heterogeneous multi-component polymer-based systems, a detailed computation of stress and strain fields within specific sub-domains is necessary. For example, it is well known for multi-component nanostructured systems, such as PNCs, that the mechanical behavior of the polymer/nanofiller interphases, or interfaces, is crucial for determining the global mechanical properties of the composite materials. Here we propose a new methodology to probe the distribution of mechanical properties by directly computing the (local) stress and strain at the atomic level, and averaging over user-defined subdomains. The workflow of our computational method possesses the following features:•Calculating the stress and strain per atom (or per particle) for nanostructured microscopic (here atomistic) model configurations, under an imposed applied deformation.•Averaging the local, per-atom defined, stress and strain on user-defined subdomains within the nanostructured model system.•Predicting the mechanical properties within the specific subdomains, focusing on polymer/solid interphases.

4.
J Phys Chem B ; 126(38): 7429-7444, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36103667

ABSTRACT

Polymer nanohybrids with a high fraction of nanofillers have been found to exhibit improved mechanical properties compared to the neat polymer homogeneous systems. Since polymer-based materials are characterized by a broad range of relaxation times, it is expected that their response under external load would depend on the actual rate of the applied deformation. In this work, we investigate the heterogeneous mechanical behavior in glassy poly(ethylene oxide)/silica nanoparticles (PEO/SiO2) nanocomposites via detailed atomistic molecular dynamics simulations. Our goal is to unravel the effect of strain rate on the mechanism of polymer nanocomposite reinforcement, within the glassy state, by directly probing the mechanical properties at the molecular level. By applying tensile deformations with various strain rates we clearly demonstrate that the value of the applied strain rate strongly affects the mechanical properties of the PEO/SiO2 model systems, inducing a transition from a rubber-like behavior, at low strain rate, to a more brittle one, at high strain rates. Then, we further investigate the mechanical heterogeneity in glassy PEO/SiO2 systems by probing directly the stress and strain fields for various conformations of adsorbed (trains, tails, loops, and bridges), and free polymer chains. Our data emphasize the importance of both train and bridge conformations on the mechanical reinforcement of the polymer nanocomposites. Last, we also probe the mobility of various chain conformations, under different applied strain rates, and their contribution to the overall mechanical behavior of the nanocomposite, during the deformation process.


Subject(s)
Nanocomposites , Polymers , Ethylene Oxide , Rubber , Silicon Dioxide
SELECTION OF CITATIONS
SEARCH DETAIL
...