Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-477770

ABSTRACT

Immunization with SARS-CoV-2 spike elicits diverse antibodies, but can any of these neutralize broadly? Here, we report the isolation and characterization of antibody WS6, from a mouse immunized with mRNA encoding the SARS-CoV-2 spike. WS6 bound diverse beta-coronavirus spikes and neutralized SARS-CoV-2 variants, SARS-CoV, and related sarbecoviruses. Epitope mapping revealed WS6 to target a region in the S2 subunit, which was conserved among SARS-CoV-2, MERS-CoV, and hCoV-OC43. The crystal structure at 2-[A] resolution of WS6 with its S2 epitope revealed recognition to center on a conserved helix, which was occluded in both prefusion and post-fusion spike conformations. Structural and neutralization analyses indicated WS6 to neutralize by inhibiting fusion, post-viral attachment. Comparison of WS6 to other antibodies recently identified from convalescent donors or mice immunized with diverse spikes indicated a stem-helical supersite - centered on hydrophobic residues Phe1148, Leu1152, Tyr1155, and Phe1156 - to be a promising target for vaccine design. HighlightsO_LISARS-CoV-2 spike mRNA-immunized mouse elicited an antibody, WS6, that cross reacts with spikes of diverse human and bat beta-coronaviruses C_LIO_LIWS6 neutralizes SARS-CoV-2 variants, SARS-CoV, and related viruses C_LIO_LICrystal structure at 2-[A] resolution of WS6 in complex with a conserved S2 peptide reveals recognition of a helical epitope C_LIO_LIWS6 neutralizes by inhibition of fusion, post-viral attachment C_LIO_LIWS6 recognizes a supersite of vulnerability also recognized by other recently identified antibodies C_LIO_LIHelical supersite of vulnerability comprises a hydrophobic cluster spanning three helical turns, with acid residues framing the center turn C_LIO_LIGenetic and structural analysis indicate supersite recognition to be compatible with diverse antibody ontogenies C_LI

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-426120

ABSTRACT

Numerous antibodies that neutralize SARS-CoV-2 have been identified, and these generally target either the receptor-binding domain (RBD) or the N-terminal domain (NTD) of the viral spike. While RBD-directed antibodies have been extensively studied, far less is known about NTD-directed antibodies. Here we report cryo-EM and crystal structures for seven potent NTD-directed neutralizing antibodies in complex with spike or isolated NTD. These structures defined several antibody classes, with at least one observed in multiple convalescent donors. The structures revealed all seven antibodies to target a common surface, bordered by glycans N17, N74, N122, and N149. This site - formed primarily by a mobile {beta}-hairpin and several flexible loops - was highly electropositive, located at the periphery of the spike, and the largest glycan-free surface of NTD facing away from the viral membrane. Thus, in contrast to neutralizing RBD-directed antibodies that recognize multiple non-overlapping epitopes, potent NTD-directed neutralizing antibodies target a single supersite.

SELECTION OF CITATIONS
SEARCH DETAIL
...