Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 50(3): 1105-15, 2011 Feb 07.
Article in English | MEDLINE | ID: mdl-21218777

ABSTRACT

A heteroditopic ligand H(2)-L consisting of a dihydroxybenzene (catechol)-unit linked via an amide bond to a pyridyl-unit and its methyl-protected precursor Me(2)-L were synthesized, characterized, and their photophysical properties investigated. The three accessible protonation states of the ligand, H(3)-L(+), H(2)-L, and H-L(-), showed distinct (1)H NMR, absorption and emission spectroscopic characteristics that allow pH-sensing. The spectroscopic signatures obtained act as a guide to understand the signaling mechanism of the luminescent pH and molybdate sensor [Re(bpy)(CO)(3)(H(2)-L)](+). It was found that upon deprotonation of the 2-hydroxy group of H(2)-L, a ligand-based absorption band emerges that overlaps with the Re(dπ)→bpy metal-to-ligand charge transfer (MLCT) band of the sensor, reducing the quantum yield for emission on excitation in the 370 nm region. In addition, deprotonation of the catechol-unit leads to quenching of the emission from the Re(dπ)→bpy (3)MLCT state, consistent with photoinduced electron transfer from the electron-rich, deprotonated catecholate to the Re-based luminophore. Finally, reaction of 2 equiv of [Re(bpy)(CO)(3)(H(2)-L)](+) with molybdate was shown to give the zwitterionic Mo(VI) complex [MoO(2){Re(CO)(3)(bpy)(L)}(2)], as confirmed by electrospray ionization (ESI) mass spectrometry and X-ray crystallography. The crystal structure determination revealed that two fully deprotonated sensor molecules are bound via their oxygen-donors to a cis-dioxo-MoO(2) center.

2.
Dalton Trans ; (9): 1474-80, 2004 May 07.
Article in English | MEDLINE | ID: mdl-15252644

ABSTRACT

The synthesis and characterization of six novel mononuclear Mn(II) and Mn(III) complexes are presented. The tripodal ligands 2-((bis(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (HL1), 2-[[((6-methylpyridin-2-yl)methyl)(pyridin-2-ylmethyl)amino]methyl]-4-nitrophenol (HL2), (2-pyridylmethyl)(6-methyl-2-pyridylmethyl)(2-hydroxybenzyl)amine (HL3) and 2-((bis(pyridin-2-ylmethyl)amino)methyl)-4-bromophenol were used. All ligands provide an N3O donor set. The compounds [Mn(II)(HL1)Cl2].CH3OH (1), [Mn(III)(L1)Cl2] (2), [Mn(II)(HL2)(EtOH)Cl2] (3), [Mn(II)(HL3)Cl2].CH3OH (4), [Mn(III)(HL4)Br2] (5) and [Mn(III)(L1)(tcc)] (6), with tcc = tetrachlorocatecholate dianion, were synthesized and characterized by various techniques such as X-ray crystallography, mass spectrometry, IR and UV-vis spectroscopy, cyclic voltammetry, and elemental analysis. Compound 1 crystallizes in the triclinic space group P1, compounds 2, 3 and 4 were solved in the monoclinic space group P2(1)/c, whereas the structure determination of and succeeded in the orthorhombic space groups Pbca and P2(1)2(1)2(1), respectively. Notably, the crystal structures of 1 and 3 are the first Mn(II) complexes featuring a non-coordinating phenol moiety. Compound 2 oxidizes 3,5-di-tert-butylcatechol to 3,5-di-tert-butylquinone exhibiting saturation kinetics at high substrate concentrations with a turnover number of kcat = 173 h(-1). The electronic influence of different substituents in para position of the phenol group is lined out.

SELECTION OF CITATIONS
SEARCH DETAIL
...