Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Dis Model Mech ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973385

ABSTRACT

Despite advancements in treatment, approximately 25% of breast cancer patients experience long-term skeletal muscle wasting (SMW), which limits mobility, reduces drug tolerance and adversely impacts survival. By understanding the underlying molecular mechanisms of SMW, we may develop new strategies to alleviate this condition and improve the lives of breast cancer patients. Chemokines are small soluble factors that regulate homing of immune cells to tissues during inflammation. In breast cancers, overexpression of the C-C chemokine ligand 2 (CCL2) correlates with unfavorable prognosis. Elevated levels of CCL2 in peripheral blood indicate possible systemic effects of this chemokine in breast cancer patients. Here, we investigated the role of CCL2 signaling on SMW in a tumor and non-tumor context. In vitro, increasing concentrations of CCL2 inhibits myoblast and myotube function through C-C chemokine receptor 2 (CCR2) dependent mechanisms involving JNK, SMAD3 and AMPK signaling. In healthy mice, delivery of recombinant CCL2 protein promotes SMW in a dose dependent manner. In vivo knockdown of breast tumor derived CCL2 partially protects against SMW. Overall, chronic, upregulated CCL2/CCR2 signaling positively regulates SMW, with implications on therapeutic targeting.

SELECTION OF CITATIONS
SEARCH DETAIL
...