Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 15(6): 4504-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26369072

ABSTRACT

Collagenous wastes discarded from leather industry were stabilized using superparamagnetic iron oxide nanoparticles and further converted into a magnetic nanocarbon. Stabilization of collagen using iron oxide nanoparticles treatment (25% offer) was confirmed through differential scanning calorimetric analysis and further evidenced through scanning electron microscopic analysis. A simple high temperature treatment of the collagen-iron oxide nanoparticle composite at 850 degrees C for 2 h under Ar atmosphere yielded a bi-functional, magnetic and conducting, nanocarbon. The X-ray diffraction and Raman spectroscopic analysis reveal the partial graphitation and X-ray photoelectron spectroscopic results show the presence of trace-iron containing carbon, naturally doped with nitrogen and oxygen. Transmission electron microscopic analysis show the presence of larger iron oxide nanocrystals embedded in graphitic carbon layers while superconducting quantum interference device based analysis reveals a perfect ferrimagnetic property with saturation magnetization. Thus, we have stabilized the collagen waste fibers using iron oxide nanoparticles and converted them into a bi-functional nanocarbon, which has potential for various applications including energy, leather making and environmental remediation.


Subject(s)
Carbon/chemistry , Collagen/chemistry , Magnetite Nanoparticles/chemistry , Nanocomposites/chemistry , Hot Temperature , Microscopy, Electron, Transmission , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...