Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 137(24): 7929-34, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26042473

ABSTRACT

Phenotypic cell-based screening is a powerful approach to small-molecule discovery, but a major challenge of this strategy lies in determining the intracellular target and mechanism of action (MoA) for validated hits. Here, we show that the small-molecule BRD0476, a novel suppressor of pancreatic ß-cell apoptosis, inhibits interferon-gamma (IFN-γ)-induced Janus kinase 2 (JAK2) and signal transducer and activation of transcription 1 (STAT1) signaling to promote ß-cell survival. However, unlike common JAK-STAT pathway inhibitors, BRD0476 inhibits JAK-STAT signaling without suppressing the kinase activity of any JAK. Rather, we identified the deubiquitinase ubiquitin-specific peptidase 9X (USP9X) as an intracellular target, using a quantitative proteomic analysis in rat ß cells. RNAi-mediated and CRISPR/Cas9 knockdown mimicked the effects of BRD0476, and reverse chemical genetics using a known inhibitor of USP9X blocked JAK-STAT signaling without suppressing JAK activity. Site-directed mutagenesis of a putative ubiquitination site on JAK2 mitigated BRD0476 activity, suggesting a competition between phosphorylation and ubiquitination to explain small-molecule MoA. These results demonstrate that phenotypic screening, followed by comprehensive MoA efforts, can provide novel mechanistic insights into ostensibly well-understood cell signaling pathways. Furthermore, these results uncover USP9X as a potential target for regulating JAK2 activity in cellular inflammation.


Subject(s)
Insulin-Secreting Cells/drug effects , Interferon-gamma/immunology , Janus Kinase 2/immunology , Protective Agents/chemistry , Protective Agents/pharmacology , STAT1 Transcription Factor/immunology , Animals , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Humans , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/immunology , Phosphorylation/drug effects , Rats , Signal Transduction/drug effects , Ubiquitin Thiolesterase/immunology , Ubiquitination/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...