Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(30): 26396-26406, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35936464

ABSTRACT

In an integrated circuit, signal propagation loss is proportional to the frequency, dissipation factor (D f), and square root of dielectric constant (D k). The loss becomes obvious as we move to high-frequency communication. Therefore, a polymer having low D k and D f is critical for copper-clad laminates at higher frequencies. For this purpose, a 4-vinylbenzyl ether phenoxy-2,3,5,6-tetrafluorophenylene-terminated OPE (VT-OPE) resin was synthesized and its properties were compared with the thermoset of commercial OPE-2St resin. The thermoset of VT-OPE shows a higher T g (242 vs 229 °C), a relatively high cross-linking density (1.59 vs 1.41 mmole cm-3), a lower coefficient of thermal expansion (55 vs 76 ppm/°C), better dielectric characteristic at 10 GHz (D k values of 2.58 vs 2.75, D f values of 0.005 vs 0.006), lower water absorption (0.135 vs 0.312 wt %), and better flame retardancy (UL-94 VTM-0 vs VTM-1 with dropping seriously) than the thermoset of OPE-2St. To verify the practicability of VT-OPE for copper-clad laminate, a laboratory process was also performed to prepare a copper-clad laminate, which shows a high peeling strength with copper foil (5.5 lb/in), high thermal reliability with a solder dipping test at 288 °C (>600 s), and the time for delamination of the laminate in thermal mechanical analysis (TMA) at 288 °C is over 60 min.

2.
ACS Appl Mater Interfaces ; 14(22): 25466-25477, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35604330

ABSTRACT

Covalent organic frameworks (COFs) are of great interest in the energy and optoelectronic fields due to their high porosity, superior thermal stability, and highly ordered conjugated architecture, which are beneficial for charge migration, charge separation, and light harvesting. In this study, polyimide COFs (PI-COFs) are synthesized through the condensation reaction of pyromellitic dianhydride (PMDA) with tris(4-aminophenyl) amine (TAPA) and then doped in the TiO2 photoelectrode of a dye-sensitized solar cell (DSSC) to co-work with N719 dye to explore their functionality. As a benchmark, the pristine DSSC without the doping of PI-COFs exhibits a power conversion efficiency of 9.05% under simulated one sun illumination. The doping of 0.04 wt % PI-COFs contributes an enhanced short-circuit current density (JSC) from 17.43 to 19.03 mA/cm2, and therefore, the cell efficiency is enhanced to 9.93%. The enhancement of JSC is attributed to the bifunctionality of PI-COFs, which enhances the charge transfer/injection and suppresses the charge recombination through the host (PI-COF)-guest (N719 dye) interaction. In addition, the PI-COFs also function as a cosensitizer and contribute a small quantity of photoinduced electrons upon sunlight illumination. Surface modification of oxygen plasma improves the hydrophilicity of PI-COF particles and reinforces the heterogeneous linkage between PI-COF and TiO2 nanoparticles, giving rise to more efficient charge injection. As a result, the champion cell exhibits a high power conversion efficiency of 10.46% with an enhanced JSC of 19.43 mA/cm2. This methodology of increasing solar efficiency by modification of the photoelectrode with the doping of PI-COFs in the TiO2 nanoparticles is promising in the development of DSSCs.

3.
ACS Appl Mater Interfaces ; 10(46): 39970-39982, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30376713

ABSTRACT

In this work, we have synthesized a novel porphyrin dye named SK7, which contains two N, N-diarylamino moieties at two ß-positions as electron-donating units and one carboxy phenylethynyl moiety at the meso-position as an electron-withdrawing, anchoring group. This novel dye was tested for the application in dye-sensitized solar cells. The light-harvesting behavior of SK7 and YD2 was investigated using UV-vis absorption and density functional calculation. The electron transport properties at the TiO2/dye/electrolyte interface for SK7- and YD2-based devices were evaluated by electrochemical impedance spectroscopy. X-ray crystallographic characterization was conducted to understand the influence of two N, N-diarylamino units at two ß-positions. The power conversion efficiencies of ca. 6.54% under 1 sun illumination (AM 1.5G) and ca. 19.72% under a T5 light source were noted for the SK7 dye. The performance of SK7 is comparable to that of dye YD2, which contains only one N, N-diarylamino moiety at the meso-position (ca. 7.78 and 20.00% under 1 sun and T5 light, respectively).

4.
ACS Appl Mater Interfaces ; 10(3): 2391-2399, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29281249

ABSTRACT

Since their introduction, dye-sensitized solar cells (DSCs) have achieved huge success at a laboratory level. Recently, research is concentrated to visualize large DSC modules at the commercial platform. In that aspect, we have tested structurally simple porphyrin-based dye SK6 and anthracene-based dye CW10 for DSCs application under simulated 1 sun (AM 1.5G) and indoor light sources. These two dyes can be easily synthesized and yet are efficient with cell performances of ca. 5.42% and ca. 5.75% (without coadsorbent/additive) for SK6 and CW10, respectively, under AM 1.5G illumination. The power conversion efficiency (PCE) of SK6 reported in this work is the highest ever reported; this is achieved by optimizing the adsorption of SK6 on TiO2 photoanode using the most suitable solvent and immersion period. Cosensitization of SK6 with CW10 on TiO2 surface has boosted cell performance further and achieved PCE of ca. 6.31% under AM 1.5G illumination. Charge-transfer properties of individual and cosensitized devices at TiO2/dye/electrolyte interface were examined via electrochemical impedance spectroscopy. To understand the cell performances under ambient light conditions, we soaked individual and cosensitized devices under T5 and light-emitting diode light sources in the range of 300-6000 lx. The PCE of ca. 22.91% under T5 light (6000 lx) with JSC = 0.883 mA cm-2, VOC = 0.646 V, and FF = 0.749 was noted for the cosensitized device, which equals a power output of 426 µW cm-2. These results reveal that DSCs made of structurally simple dyes performed efficiently under both 1 sun (AM 1.5G) and indoor light conditions, which is undoubtedly a significant achievement when it comes to a choice of commercial application.

5.
ACS Appl Mater Interfaces ; 8(5): 3418-27, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26752243

ABSTRACT

A series of zinc porphyrin dyes YD22-YD28 were synthesized and used for dye-sensitized solar cells. Dyes YD26-YD28 consist of zinc porphyrin (ZnP) as core unit, arylamine (Am) as electron-donating group, and p-ethynylbenzoic acid (EBA) as an electron-withdrawing/-anchoring group. The dyes YD22-YD25 contain additional phenylethynylene group (PE) bridged between Am and ZnP units. The influence of the PE unit on molecular properties as well as photovoltaic performances were investigated via photophysical and electrochemical studies and density functional calculations. With the insertion of PE unit, the dyes YD22-YD25 possess better light-harvesting properties in terms of significantly red-shifted Q-band absorption. The conversion efficiencies for dyes YD22-YD25 are better than those of dyes YD26-YD28 owing to larger J(SC) output. Natural transition orbitals and Mulliken charge analysis were used to analyze the electron injection efficiency for porphyrin dyes upon time-dependent DFT calculations. The results indicated that insertion of additional PE unit is beneficial to higher J(SC) by means of improved light-harvesting property due to broadened and red-shifted absorption.

SELECTION OF CITATIONS
SEARCH DETAIL
...